BLOCKCHAIN TUTORIAL II

Elliptic Curve Key Pair Generation

mobilefish.

BLOCKCHAIN TUTORIAL II

Elliptic Curve Key Pair Generation

ELLIPTIC CURVE KEY PAIR GENERATION

- generate private and public key pairs.
- 1985.
- and hence speed.
- (x^2) . Elliptic curves are always cubic (x^3) .

mobilefish.com

• Blockchain implementations such as Bitcoin or Ethereum uses Elliptic Curves (EC) to

• Elliptic Curve Cryptography (ECC) was invented by Neal Koblitz and Victor Miller in

• A 256-bit ECC public key provides comparable security to a 3072-bit RSA public key. The primary advantage of using Elliptic Curve based cryptography is reduced key size

• Elliptic curves have nothing to do with ellipses. Ellipses are formed by quadratic curves

STANDARDS FOR EFFICIENT CRYPTOGRAPHY GROUP

- The Standards for Efficient Cryptography Group (SECG) is an international consortium to develop commercial standards for efficient and interoperable cryptography based on elliptic curve cryptography (ECC).
- The SECG website is: http://www.secg.org
- The SECG has published a document with a recommended set of elliptic curve is collectively referred to as the Elliptic Curve Domain Parameters.
- For example: secp256kl

domain parameters, referred by the letters p, a, b, G, n, h. This data set { p, a, b, G, n, h }

• These parameters have been given nicknames to enable them to be easily identified.

ELLIPTIC CURVE DOMAIN PARAMETERS

Parameters	Elliptic Curve Key Length	RSA Key Length
secp192k1	192	1536
secp192r1	192	1536
secp224k1	224	2048
secp224rl	224	2048
secp256k1	256	3072
secp256rl	256	3072
secp384rl	384	7680
secp512rl	512	15360

In this table you will find a set of elliptic curve domain parameters.

The elliptic curves uses smaller key sizes with respect to RSA providing comparable security.

SECP256KI

- Bitcoin and Ethereum both uses the same secp256k1 elliptic curve domain parameters.
- secp256k1 uses the following elliptic curve equation: $y^2 = x^3 + ax + b$
- In the following slides we will go thru each parameter p, a, b, G, n, h
- Parameter a = 0
- Parameter b = 7

SECP256KI: PARAMETER P

- is a prime number. Thus the finite field $Fp = \{0, ..., p 1\}$
- This means that modulo p should be used in the equation:
 - The EC equation: $y^2 = x^3 + ax + b$
 - The EC equation with modulo operation: $y^2 = x^3 + ax + b \pmod{p}$

• $p = 2^{256} - 2^{32} - 2^{9} - 2^{8} - 2^{7} - 2^{6} - 2^{4} - 1 = 2^{256} - 2^{32} - 977$

• A finite field is a field with a finite number of elements, defined by parameter p, which

SECP256KI: PARAMETER G

- The basepoint G, also known as the generator or primitive element, is a other points on the curve.
- Often the basepoint G is displayed in two ways:
- Compressed form (prefix 02):
 - 16F81798
 - If the prefix is removed, the value is the X_G coordinate (= 79BE667E ...)
 - To get the Y_G coordinate, calculate: Y_G = $(X_{3G}^{3} + 7)^{\frac{1}{2}}$

mobilefish.com

predetermined point (X_G, Y_G) on the elliptic curve that everyone uses to compute

• 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B

SECP256KI: PARAMETER G

- Uncompressed form (prefix 04):
 - 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 A6855419 9C47D08F FB10D4B8
 - If the prefix is removed, the first half of the value is the X_G coordinate (= 16F81798)
 - The last half is the Y_G coordinate (= **483ADA77** 26A3C465 5DA4FBFC OEII08A8 FDI7B448 A6855419 9C47D08F FBI0D4B8)

mobilefish.com

59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448

79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B

SECP256KI: PARAMETER N

- parameter n which is called the order of base point G.
- D0364141
- private key. Any 256-bit number in the range [1, n 1] is a valid private key.

mobilefish.com

• In my discrete logarithm video (part 9) I have explained what a cyclic group is. When you apply a certain number of operations to base point G, the cycle starts all over again in the same order. When the next cycle starts the first time it is indicated by

• The parameter n determines what the maximum value is that can be turned into a

SECP256KI: PARAMETER H

- The parameter h is called the cofactor and has the constant value I.
- not elaborate on the purpose of this parameter.

mobilefish.com

• Because it has value I it does not play a role in the key generation and I therefore will

DOT OPERATIONS

- point (aka generator G) (x_G , y_G) on the elliptic curve:
 - Point addition
 - Point doubling
- The elliptic curve $(y^2 = x^3 + 7)$ has the following properties:

 - If a line is tangent to the curve, it intersects another point on the curve.
 - All vertical lines intersects the curve at infinity.

mobilefish.com

• There are two operations often called dot operations which can be applied to a base

• If a line intersects two points P and Q, it intersects a third point on the curve -R.

POINT ADDITION

- Adding two points P and Q on a elliptic curve ($P \neq Q$).
- Geometry approach:
 - Draw a straight line between $P(x_1, y_1)$ and $Q(x_2, y_2)$.
 - The line will intersect the elliptic curve at exactly one more point -R.
 - The reflection of the point -R with respect to x-axis gives the point R (x₃, y₃), which is the results of addition of points P and Q.
- Point addition does not mean addition of the x or y coordinates of P and Q. It is just a name given for this approach.

POINT ADDITION

• Mathematical approach (ECAdd):

$\cdot \lambda = (y_G - y) \mod(x_G - x) \pmod{p}$ • $\mathbf{x}_{\mathbf{R}} = \lambda^2 - \mathbf{x} - \mathbf{x}_{\mathbf{G}} \pmod{p}$ • $y_R = \lambda(x - x_R) - y \pmod{p}$

- λ is the slope of the line
- x and y are the coordinates of P
- Point Q is the base point G (x_G, y_G)

POINT DOUBLING

- same location as point P(P = Q)
- Geometry approach:
 - Draw a tangent line to the elliptic curve at point P.
 - The line intersects the elliptic curve at the point -R.
 - results of doubling of point P.
- given for this approach.

mobilefish.com

• Point doubling of point P on an elliptic curve. It is the same as moving point Q to

• The reflection of the point -R with respect to x-axis gives the point R, which is the

• Point doubling does not mean multiplying the x or y coordinates of P. It is just a name

POINT DOUBLING

Mathematical approach (ECDouble):

- $\lambda = (3x^2) \mod(2y) \pmod{p}$ • $x_R = \lambda^2 - 2x \pmod{p}$ • $y_R = \lambda(x - x_R) - y \pmod{p}$
- $\cdot\,\lambda$ is the slope of the line
- x and y are the coordinates of P

MATHEMATICAL EQUATION

ECAdd(x, y) {

$$\lambda = (y_G - y) \mod(x_G - x) \pmod{p}$$

 $x_R = \lambda^2 - x - x_G \pmod{p}$
 $y_R = \lambda(x - x_R) - y \pmod{p}$

More information about the mathematical equations can be found at: http://www.mobilefish.com/services/cryptocurrency/cryptocurrency_vl.html

ECDouble(x, y) {

$$\lambda = (3x^2) \mod(2y) \pmod{p}$$

$$x_R = \lambda^2 - 2x \pmod{p}$$

$$y_R = \lambda(x - x_R) - y \pmod{p}$$
}

ADDITIONAL INFORMATION

- The following procedure describes how to generate a Bitcoin public key. For other blockchain implementations it may differ.
- When the 'raw' Bitcoin public key is generated using the ECAdd and ECDouble functions it looks like this (large hexadecimal number):
- the actual Bitcoin address which will be explained in another video.

mobilefish.com

2A574EA59CAE80B09D6BA415746E9B031ABFBE83F149B43B37BE035B871648720 336C5EB647E891C98261C57C13098FA6AE68221363C68FF15841B86DAD60241

The actual Bitcoin address looks like: IADS8Lk6vN87Ri9hFjoFduPLNo76cwqUmf

Additional conversion steps need to be applied on the "raw" Bitcoin public key to get

