
ESA PSS-05-03 Issue 1 Revision 1
March 1995

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

Guide
to the
software requirements
definition
phase

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

ii ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-03 Guide to the software requirements definition phase

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 1991 First issue

1 1 1995 Minor revisions for publication

Issue 1 Revision 1 approved, May 1995
Board for Software Standardisation and Control
M. Jones and U. Mortensen, co-chairmen

Issue 1 approved 1st February 1992
Telematics Supervisory Board

Issue 1 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.
ESA Price code: E1
ISSN 0379-4059

Copyright © 1995 by European Space Agency

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) iii
TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION..1
1.1 PURPOSE ...1
1.2 OVERVIEW..1

CHAPTER 2 THE SOFTWARE REQUIREMENTS DEFINITION PHASE3
2.1 INTRODUCTION...3
2.2 EXAMINATION OF THE URD..4
2.3 CONSTRUCTION OF THE LOGICAL MODEL ...5

2.3.1 Functional decomposition..6
2.3.2 Performance analysis ...8
2.3.3 Criticality analysis ...8
2.3.4 Prototyping..8

2.4 SPECIFICATION OF THE SOFTWARE REQUIREMENTS9
2.4.1 Functional requirements...9
2.4.2 Performance requirements...10
2.4.3 Interface requirements..11
2.4.4 Operational requirements...12
2.4.5 Resource requirements ..12
2.4.6 Verification requirements ..13
2.4.7 Acceptance-testing requirements..13
2.4.8 Documentation requirements...13
2.4.9 Security requirements...13
2.4.10 Portability requirements...14
2.4.11Quality requirements ..15
2.4.12 Reliability requirements ...15
2.4.13 Maintainability requirements ...16
2.4.14 Safety requirements..17

2.5 SYSTEM TEST PLANNING..17
2.6 THE SOFTWARE REQUIREMENTS REVIEW ...17
2.7 PLANNING THE ARCHITECTURAL DESIGN PHASE ..18

CHAPTER 3 METHODS FOR SOFTWARE REQUIREMENTS DEFINITION19
3.1 INTRODUCTION..19
3.2 FUNCTIONAL DECOMPOSITION ..19
3.3 STRUCTURED ANALYSIS...20

3.3.1 DeMarco/SSADM ..22
3.3.2 Ward/Mellor..23
3.3.3 SADT ..23

3.4 OBJECT-ORIENTED ANALYSIS ...24
3.4.1 Coad and Yourdon ..25

iv ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
PREFACE

3.4.2 OMT..26
3.4.3 Shlaer-Mellor ..27
3.4.4 Booch...27

3.5 FORMAL METHODS ...29
3.5.1 Z..30
3.5.2 VDM..31
3.5.3 LOTOS ...32

3.6 JACKSON SYSTEM DEVELOPMENT..33
3.7 RAPID PROTOTYPING...34

CHAPTER 4 TOOLS FOR SOFTWARE REQUIREMENTS DEFINITION37
4.1 INTRODUCTION...37
4.2 TOOLS FOR LOGICAL MODEL CONSTRUCTION...37
4.3 TOOLS FOR SOFTWARE REQUIREMENTS SPECIFICATION.............................38

4.3.1 Software requirements management ...38
4.3.2 Document production ...38

CHAPTER 5 THE SOFTWARE REQUIREMENTS DOCUMENT39
5.1 INTRODUCTION...39
5.2 STYLE..39

5.2.1 Clarity ...39
5.2.2 Consistency ...40
5.2.3 Modifiability ..40

5.3 EVOLUTION...40
5.4 RESPONSIBILITY...41
5.5 MEDIUM...41
5.6 CONTENT..41

CHAPTER 6 LIFE CYCLE MANAGEMENT ACTIVITIES49
6.1 INTRODUCTION...49
6.2 PROJECT MANAGEMENT PLAN FOR THE AD PHASE.......................................49
6.3 CONFIGURATION MANAGEMENT PLAN FOR THE AD PHASE.........................50
6.4 VERIFICATION AND VALIDATION PLAN FOR THE AD PHASE...........................50
6.5 QUALITY ASSURANCE PLAN FOR THE AD PHASE..51
6.6 SYSTEM TEST PLANS..52

APPENDIX A GLOSSARY ..A-1
APPENDIX B REFERENCES..B-1
APPENDIX C MANDATORY PRACTICES ...C-1
APPENDIX D REQUIREMENTS TRACEABILITY MATRIX..................................D-1
APPENDIX E CASE TOOL SELECTION CRITERIA ..E-1
APPENDIX F INDEX ... F-1

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) v
PREFACE

PREFACE

This document is one of a series of guides to software engineering produced by
the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in
projects.

Levels one and two of the document tree at the time of writing are shown in
Figure 1. This guide, identified by the shaded box, provides guidance about
implementing the mandatory requirements for the software requirements definition
phase described in the top level document ESA PSS-05-0.

Guide to the
Software Engineering

Guide to the
User Requirements

Definition Phase

Guide to
Software Project

Management

PSS-05-01

PSS-05-02 UR Guide
PSS-05-03 SR Guide

PSS-05-04 AD Guide
PSS-05-05 DD Guide

PSS-05-07 OM Guide

PSS-05-08 SPM Guide
PSS-05-09 SCM Guide

PSS-05-11 SQA Guide

ESA
Software

Engineering
Standards

PSS-05-0

Standards

Level 1

Level 2

PSS-05-10 SVV Guide

PSS-05-06 TR Guide

Figure 1: ESA PSS-05-0 document tree

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this
guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Bryan Melton, Daniel de Pablo,
Adriaan Scheffer and Richard Stevens.

vi ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
PREFACE

The BSSC wishes to thank Jon Fairclough for his assistance in the development
of the Standards and Guides, and to all those software engineers in ESA and Industry
who have made contributions.

Requests for clarifications, change proposals or any other comment concerning
this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr C Mazza Attention of Mr B Melton
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 1
INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in house or by industry [Ref. 1].

ESA PSS-05-0 defines a preliminary phase to the software
development life cycle called the ‘User Requirements Definition Phase' (UR
phase). The first phase of the software development life cycle is the
‘Software Requirements Definition Phase' (SR phase). Activities and
products are examined in the ‘SR review' (SR/R) at the end of the phase.

 The SR phase can be called the ‘problem analysis phase' of the life
cycle. The user requirements are analysed and software requirements are
produced that must be as complete, consistent and correct as possible.

This document provides guidance on how to produce the software
requirements. This document should be read by all active participants in the
SR phase, e.g. initiators, user representatives, analysts, designers, project
managers and product assurance personnel.

1.2 OVERVIEW

Chapter 2 discusses the SR phase. Chapters 3 and 4 discuss
methods and tools for software requirements definition. Chapter 5 describes
how to write the SRD, starting from the template. Chapter 6 summarises the
life cycle management activities, which are discussed at greater length in
other guides.

All the SR phase mandatory practices in ESA PSS-05-0 are repeated
in this document. The identifier of the practice is added in parentheses to
mark a repetition. No new mandatory practices are defined.

2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
INTRODUCTION

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 3
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

CHAPTER 2
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

2.1 INTRODUCTION

In the SR phase, a set of software requirements is constructed. This
is done by examining the URD and building a ‘logical model', using
recognised methods and specialist knowledge of the problem domain. The
logical model should be an abstract description of what the system must do
and should not contain implementation terminology. The model structures
the problem and makes it manageable.

A logical model is used to produce a structured set of software
requirements that is consistent, coherent and complete. The software
requirements specify the functionality, performance, interfaces, quality,
reliability, maintainability, safety etc., (see Section 2.4). Software
requirements are documented in the Software Requirements Document
(SRD). The SRD gives the developer's view of the problem rather than the
user's. The SRD must cover all the requirements stated in the URD (SR12).
The correspondence between requirements in the URD and SRD is not
necessarily one-to-one and frequently isn't. The SRD may also contain
requirements that the developer considers are necessary to ensure the
product is fit for its purpose (e.g. product assurance standards and
interfaces to test equipment).

 The main outputs of the SR phase are the:
• Software Requirements Document (SRD);
• Software Project Management Plan for the AD phase (SPMP/AD);
• Software Configuration Management Plan for the AD phase(SCMP/AD);
• Software Verification and Validation Plan for the AD Phase (SVVP/AD);
• Software Quality Assurance Plan for the AD phase (SQAP/AD);
• System Test Plan (SVVP/ST).

Progress reports, configuration status accounts, and audit reports
are also outputs of the phase. These should always be archived by the
project.

Defining the software requirements is the developer's responsibility.
Besides the developer, participants in the SR phase should include users,

4 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

systems engineers, hardware engineers and operations personnel. Project
management should ensure that all parties can review the requirements, to
minimise incompleteness and error.

SR phase activities must be carried out according to the plans
defined in the UR phase (SR01). Progress against plans should be
continuously monitored by project management and documented at regular
intervals in progress reports.

Figure 2.1 summarises activities and document flow in the SR
phase. The following subsections describe the activities of the SR phase in
more detail.

SCMP/AD

Approved
URD

Examined
URD

Logical
Model

Draft
SRD

Draft
SVVP/ST

Approved
SRD

Examine
URD

Construct
Model

Specify
Req'mnts

Write
Test Plan

SR/R

Write
AD Plans

Accepted RID

CASE tools

Methods

Prototyping

SPMP/AD

SQAP/AD
SVVP/AD

SVVP/ST

SCMP/SR
SPMP/SR

SQAP/SR
SVVP/SR

Figure 2.1: SR phase activities

2.2 EXAMINATION OF THE URD

If the developers have not taken part in the User Requirements
Review, they should examine the URD and confirm that it is understandable.
ESA PSS-05-02, ‘Guide to the User Requirements Definition Phase', contains
material that should assist in making the URD understandable. Developers
should also confirm that adequate technical skills are available for the SR
phase.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 5
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

2.3 CONSTRUCTION OF THE LOGICAL MODEL

 A software model is:
• a simplified description of a system;
• hierarchical, with consistent decomposition criteria;
• composed of symbols organised according to some convention;
• built using recognised methods and tools;
• used for reasoning about the software.

A software model should be a ‘simplified description' in the sense
that it describes the high-level essentials. A hierarchical presentation also
makes the description simpler to understand, evaluate at various levels of
detail, and maintain. A recognised method, not an undocumented ad-hoc
assembly of ‘common sense ideas', should be used to construct a software
model (SR03). A method, however, does not substitute for the experience
and insight of developers, but helps developers apply those abilities better.

In the SR phase, the developers construct an implementation-
independent model of what is needed by the user (SR02). This is called a
’logical model' and it:
• shows what the system must do;
• is organised as a hierarchy, progressing through levels of abstraction;
• avoids using implementation terminology (e.g. workstation);
• permits reasoning from cause-to-effect and vice-versa.

A logical model makes the software requirements understandable
as a whole, not just individually.

A logical model should be built iteratively. Some tasks may need to
be repeated until the description of each level is clear and consistent.
Walkthroughs, inspections and technical reviews should be used to ensure
that each level of the model is agreed before proceeding to the next level of
detail.

 CASE tools should be used in all but the smallest projects,
because they make clear and consistent models easier to construct and
modify.

The type of logical model built depends on the method selected.
The method selected depends on the type of software required. Chapter 3

6 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

summarises the methods suitable for constructing a logical model. In the
following sections, functional decomposition concepts and terminology are
used to describe how to construct a logical model. This does not imply that
this method shall be used, but only that it may be suitable.

2.3.1 Functional decomposition

The first step in building a logical model is to break the system
down into a set of basic functions with a few simple inputs and outputs. This
is called ’functional decomposition'.

Functional decomposition is called a ‘top-down' method because it
starts from a single high-level function and results in a set of low-level
functions that combine to perform the high-level function. Each level
therefore models the system at different levels of abstraction. The top-down
approach produces the most general functions first, leaving the detail to be
defined only when necessary.

Consistent criteria should be established for decomposing
functions into subfunctions. The criteria should not have any
‘implementation bias' (i.e. include design and production considerations).
Examples of implementation bias are: ‘by programming language', ‘by
memory requirements' or ‘by existing software'.

 ESA PSS-05-0 defines the guidelines for building a good logical
model. These are repeated below.

(1) Functions should have a single definite purpose.

(2) Functions should be appropriate to the level they appear at (e.g.
‘Calculate Checksum' should not appear at the same level as ‘Verify
Telecommands').

(3) Interfaces should be minimised. This allows design components with
weak coupling to be easily derived.

(4) Each function should be decomposed into no more than seven
lower-level functions.

(5) Implementation terminology should be absent (e.g. file, record, task,
module, workstation).

(6) Performance attributes of each function (capacity, speed etc) should
be stated wherever possible.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 7
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

(7) Critical functions should be identified.

(8) Function names should reflect the purpose and say ‘what' is to be
done, not ‘how' it must be done.

(9) Function names should have a declarative structure (e.g. ‘Validate
Telecommands').

The recommendation to minimise interfaces needs further
qualification. The number of interfaces can be measured by the number of:
• inputs and outputs;
• different functions that interface with it.

High-level functions may have many inputs and outputs. In the first
iteration of the logical model, the goal is a set of low-level functions that
have a few simple interfaces. The processing of the low-level functions
should be briefly described.

In the second and subsequent iterations, functions and data are
restructured to reduce the number of interfaces at all levels. Data structures
should match the functional decomposition. The data a function deals with
should be appropriate to its level.

 A logical model should initially cope with routine behaviour.
Additional functions may be added later to handle non-routine behaviour,
such as startup, shutdown and error handling.

 Functional decomposition has reached a sufficient level of detail
when the model:
• provides all the capabilities required by the user;
• follows the nine guidelines describe above.

When the use of commercial software looks feasible, developers
should ensure that it meets all the user requirements. For example, suppose
a high-level database management function is identified. The developer
decides that decomposition of the function ‘Manage Database' can be
stopped because a constraint requirement demands that a particular DBMS
is used. This would be wrong if there is a user requirement to select objects
from the database. Decomposition should be continued until the user
requirement has been included in the model. The designer then has to
ensure that a DBMS with the select function is chosen.

8 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

2.3.2 Performance analysis

User requirements may contain performance attributes (e.g.
capacity, speed and accuracy). These attributes define the performance
requirements for a function or group of functions. The logical model should
be checked to ensure that no performance requirements conflict; this is
done by studying pathways through the data flow.

Decisions about how to partition the performance attributes
between a set of functions may involve implementation considerations. Such
decisions are best left to the designer and should be avoided in the SR
phase.

2.3.3 Criticality analysis

Capability requirements in the URD may have their availability
specified in terms of ‘Hazard Consequence Severity Category' (HCSC). This
can range from ‘Catastrophic' through ‘Critical' and ‘Marginal' to ‘Negligible'.
If this has been done, the logical model should be analysed to propagate
the HCSC to all the requirements related to the capability that have the
HCSC attached. Reference 24 describes three criticality analysis techniques:
• Software Failure Modes, Effects and Criticality Analysis (software

FMECA);
• Software Common Mode Failure Analysis (Software CFMA);
• Software Fault Tree Analysis (Software FTA).

2.3.4 Prototyping

Models are usually static. However it may be useful to make parts of
the model executable to verify them. Such an animated, dynamic model is a
kind of prototype.

Prototyping can clarify requirements. The precise details of a user
interface may not be clear from the URD, for example. The construction of a
prototype for verification by the user is the most effective method of
clarifying such requirements.

 Data and control flows can be decomposed in numerous ways. For
example a URD may say ‘enter data into a form and produce a report'.

 Only after some analysis does it become apparent what the
contents of the form or report should be, and this ought to be confirmed with

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 9
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

the user. The best way to do this to make an example of the form or report,
and this may require prototype software to be written.

The development team may identify some requirements as
containing a high degree of risk (i.e. there is a large amount of uncertainty
whether they can be satisfied). The production of a prototype to assess the
feasibility or necessity of such requirements can be very effective in deciding
whether they ought to be included in the SRD.

2.4 SPECIFICATION OF THE SOFTWARE REQUIREMENTS

ESA PSS-05-0 defines the following types of software requirements:
Functional Requirements Documentation Requirements
Performance Requirements Security Requirements
Interface Requirements Portability Requirements
Operational Requirements Quality Requirements
Resource Requirements Reliability Requirements
Verification Requirements Maintainability Requirements
Acceptance-Testing Requirements Safety Requirements

Functional requirements should be organised top-down, according
to the structure of the logical model. Non-functional requirements should be
attached to functional requirements and can therefore appear at all levels in
the hierarchy, and apply to all functional requirements below them. They
may be organised as a separate set and cross-referenced, where this is
simpler.

2.4.1 Functional requirements

A function is a ‘defined objective or characteristic action of a system
or component' and a functional requirement ‘specifies a function that a
system or system component must be able to perform [Ref. 2]. Functional
requirements are matched one-to-one to nodes of the logical model. A
functional requirement should:
• define ‘what' a process must do, not ‘how' to implement it;
• define the transformation to be performed on specified inputs to

generate specified outputs;
• have performance requirements attached;

10 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

• be stated rigourously.

Functional requirements can be stated rigourously by using short,
simple sentences. Several styles are possible, for example Structured
English and Precondition-Postcondition style [Ref. 7, 12].

Examples of functional requirements are:
• ‘Calibrate the instrument data'
• ‘Select all calibration stars brighter than the 6th magnitude'

2.4.2 Performance requirements

Performance requirements specify numerical values for measurable
variables used to define a function (e.g. rate, frequency, capacity, speed
and accuracy). Performance requirements may be included in the
quantitative statement of each function, or included as separate
requirements. For example the requirements:

‘Calibrate the instrument data'

‘Calibration accuracy shall be 10%'

can be combined to make a single requirement:

‘Calibrate the instrument data to an accuracy of 10%'

The approach chosen has to trade-off modifiability against
duplication.

Performance requirements may be represented as a range of values
[Ref. 21], for example the:
• acceptable value;
• nominal value;
• ideal value.

The acceptable value defines the minimum level of performance
allowed; the nominal value defines a safe margin of performance above the
acceptable value, and the ideal value defines the most desirable level of
performance.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 11
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

2.4.3 Interface requirements

Interface requirements specify hardware, software or database
elements that the system, or system component, must interact or
communicate with. Accordingly, interface requirements should be classified
into software, hardware and communications interfaces.

 Interface requirements should also be classified into ‘internal' and
‘external' interface requirements, depending upon whether or not the
interface coincides with the system boundary. Whereas the former should
always be described in the SRD, the latter may be described in separate
‘Interface Control Documents' (ICDs).

 This ensures a common, self-contained definition of the interface.

 An interface requirement may be stated by:
• describing the data flow or control flow across the interface;
• describing the protocol that governs the exchanges across the

interface;
• referencing the specification of the component in another system that is

to be used and describing:
 - when the external function is utilised;
 - what is transferred when the external function is utilised.

• defining a constraint on an external function;
• defining a constraint imposed by an external function.

Unless it is present as a constraint, an interface requirement should
only define the logical aspects of an interface (e.g. the number and type of
items that have to be exchanged), and not the physical details (e.g. byte
location of fields in a record, ASCII or binary format etc.). The physical
description of data structures should be deferred to the design phase.

12 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

Examples of interface requirements are:
• ‘Functions X and Y shall exchange instrument data';
• ‘Communications between the computer and remote instruments shall

be via the IEEE-488 protocol'.
• ‘Transmit the amount of fuel remaining to the ground control system

every fifteen seconds'.

2.4.4 Operational requirements

Operational requirements specify how the system will run (i.e. when
it is to be operated) and how it will communicate with human operators (e.g.
screen and keyboards etc.).

Operational requirements may describe physical aspects of the user
interface. Descriptions of the dialogue, screen layouts, command language
style are all types of operational requirements.

Operational requirements may define ergonomic aspects, e.g. the
levels of efficiency that users should be able to attain.

The user may have constrained the user interface in the URD. A
function may require the input of some data, for example, and this may be
implemented by a keyboard or a speech interface. The user may demand
that a speech interface be employed, and this should be stated as an
operational requirement.

2.4.5 Resource requirements

Resource requirements specify the upper limits on physical
resources such as processing power, main memory, disk space etc. They
may describe any requirements that the development or operational
environment place upon the software. A resource requirement should state
the facts about the resources, and not constrain how they are deployed.

At a system design level, specific allocations of computer resources
may have been allocated to software subsystems. Software developers
must be aware of resource constraints when they design the software. In
some cases (e.g. embedded systems) resource constraints cannot be
relaxed.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 13
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

Examples of resource requirements are:
• ‘All programs shall execute with standard user quotas.'
• ‘5 Mbytes of disk space are available.'

2.4.6 Verification requirements

Verification requirements constrain the design of the product. They
may do this by requiring features that facilitate verification of system
functions, or by saying how the product is to be verified.

 Verification requirements may include specifications of any:
• simulations to be performed;
• requirements imposed by the test environment;
• diagnostic facilities.

Simulation is ‘a model that behaves or operates like a given system
when provided a set of controlled inputs’ [Ref. 2]. A simulator is needed
when a system cannot be exercised in the operational environment prior to
delivery. The simulator reproduces the behaviour of the operational
environment.

2.4.7 Acceptance-testing requirements

Acceptance-testing requirements constrain the design of the
product. They are a type of verification requirement, and apply specifically to
the TR phase.

2.4.8 Documentation requirements

Documentation requirements state project-specific requirements for
documentation, in addition to those contained in ESA PSS-05-0. The format
and style of the Interface Control Documents may be described in the
documentation requirements, for example.

Documentation should be designed for the target readers (i.e. users
and maintenance personnel). The URD contains a section called ‘User
Characteristics' that may help profile the readership.

2.4.9 Security requirements

Security requirements specify the requirements for securing the
system against threats to confidentiality, integrity and availability. They

14 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

should describe the level and frequency of access allowed to authorised
users of the software. If prevention against unauthorised use is required, the
type of unauthorised user should be described. The level of physical
protection of the computer facilities may be stated (e.g. backups are to be
kept in a fire-proof safe off-site).

Examples of security requirements are protection against:
• accidental destruction of the software;
• accidental loss of data;
• unauthorised use of the software;
• computer viruses.

2.4.10 Portability requirements

Portability requirements specify how easy it should be to move the
software from one environment to another. Possible computer and operating
systems, other than those of the target system, should be stated.

Examples of the portability requirements are:
• ‘it shall be possible to recompile this software to run on computer X

without modifying more than 2% of the source code';
• ‘no part of the software shall be written in assembler'.

Portability requirements can reduce performance of the software
and increase the effort required to build it. For example, asking that the
software be made portable between operating systems may require that
operating system service routines be called from dedicated modules. This
can affect performance, since the number of calls to execute a specific
operation is increased. Further, use of computer-specific extensions to a
programming language may be precluded.

Portability requirements should therefore be formulated after taking
careful consideration of the probable life-time of the software, operating
system and hardware.

The portability requirements may reflect a difference in the
development and target environment.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 15
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

2.4.11 Quality requirements

Quality requirements specify the attributes of the software that make
it fit for its purpose. The major quality attributes of reliability, maintainability
and safety should always be stated separately. Where appropriate, software
quality attributes should be specified in measurable terms (i.e. with the use
of metrics). For example requirements for the:
• use of specific procedures, standards and regulations;
• use of external software quality assurance personnel;
• qualifications of suppliers.

Any quality-related requirements stated by the user in the UR phase
may be supplemented in the SR phase by the in-house standards of the
development organisation. Such standards attempt to guarantee the quality
of a product by using proper procedures for its production.

2.4.12 Reliability requirements

Software reliability is ‘the ability of a system or component to
perform its required functions under stated conditions for a specified period
of time' [Ref. 2]. The reliability metric, ‘Mean Time Between Failure' (MTBF),
measures reliability according to this definition.

 Reliability requirements should specify the acceptable Mean Time
Between Failures of the software, averaged over a significant period. They
may also specify the minimum time between failures that is ever acceptable.
Reliability requirements may have to be derived from the user's availability
requirements. This can be done from the relation:

Availability = MTBF / (MTBF + MTTR).

MTTR is the Mean Time To Repair (see Section 2.4.13). MTBF is the
average time the software is available, whereas the sum of MTBF and MTTR
is the average time it should be operational.

Adequate margins should be added to the availability requirements
when deriving the reliability requirements. The specification of the Reliability
Requirements should provide a classification of failures based on their
severity. Table 2.3.12 provides an example classification, based on the
‘able-to-continue?' criterion.

16 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

Failure Class Definition

SEVERE Operations cannot be continued

WARNING Operations can be continued, with reduced capability

INFORMATION Operations can be continued

Table 2.3.12: Failure classification example

Two Examples of reliability requirements are:
• ‘the MTBF for severe failures shall be 4 weeks, averaged over 6 months.'
• ‘the minimum time between severe failures shall be in excess of 5 days.'

2.4.13 Maintainability requirements

Maintainability is ‘the ease with which a software system or
component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment' [Ref. 2]. All aspects of
maintainability should be covered in the specification of the maintainability
requirements, and should be specified, where appropriate, in quantitative
terms.

The idea of fault repair is used to formulate the more restricted
definition of maintainability commonly used in software engineering, i.e. ‘the
ability of an item under stated conditions of use to be retained in, or restored
to, within a given period of time, a specified state in which it can perform its
required functions‘. The maintainability metric, Mean Time To Repair (MTTR),
measures maintainability according to this second definition.

 Maintainability requirements should specify the acceptable MTTR,
averaged over a significant period. They may also specify the maximum time
to repair faults ever acceptable. Maintainability requirements may have to be
derived from the user's availability requirements (see Section 2.4.12).

Adaptability requirements can effect the software design by
ensuring that parameters that are likely to vary do not get ‘hard-wired' into
the code, or that certain objects are made generic.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 17
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

 Examples of maintainability requirements are:
• ‘the MTTR shall be 1 day averaged over a 1 year.'
• ‘the time to repair shall never exceed 1 week.'

2.4.14 Safety requirements

Safety requirements specify any requirements to reduce the
possibility of damage that can follow from software failure. Safety
requirements may identify critical functions whose failure may be hazardous
to people or property. Software should be considered safety-critical if the
hardware it controls can cause injury to people or damage to property.

While reliability requirements should be used to specify the
acceptable frequency of failures, safety requirements should be used to
specify what should happen when failures of a critical piece of software
actually do occur. In the safety category are requirements for:
• graceful degradation after a failure (e.g. warnings are issued to users

before system shutdown and measures are taken to protect property
and lives);

• continuation of system availability after a single-point failure.

2.5 SYSTEM TEST PLANNING

System Test Plans must be generated in the SR phase and
documented in the System Test section of the Software Verification and
Validation Plan (SVVP/ST). See Chapter 6 of this document. The System Test
Plan should describe the scope, approach and resources required for the
system tests, and address the verification requirements in the SRD.

2.6 THE SOFTWARE REQUIREMENTS REVIEW

The SRD and SVVP/ST are produced iteratively. Walkthroughs and
internal reviews should be held before a formal review.

 The outputs of the SR phase must be formally reviewed during the
Software Requirements Review (SR09). This should be a technical review.
The recommended procedure, described in ESA PSS-05-10, is based
closely on the IEEE standard for Technical Reviews [Ref. 8].

18 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DEFINITION PHASE

Normally, only the SRD and System Test Plans undergo the full
technical review procedure involving users, developers, management and
quality assurance staff. The Software Project Management Plan (SPMP/AD),
Software Configuration Management Plan (SCMP/AD), Software Verification
and Validation Plan (SVVP/AD), and Software Quality Assurance Plan
(SQAP/AD) are usually reviewed by management and quality assurance
staff only.

In summary, the objective of the SR/R is to verify that the:
• SRD states the software requirements clearly, completely and in

sufficient detail to enable the design process to be started;
• SVVP/ST is an adequate plan for system testing the software in the DD

phase.

The documents are distributed to the participants in the formal
review process for examination. A problem with a document is described in
a ‘Review Item Discrepancy' (RID) form that may be prepared by any
participant in the review. Review meetings are then held which have the
documents and RIDs as input. A review meeting should discuss all the RIDs
and either accept or reject them. The review meeting may also discuss
possible solutions to the problems raised by the RIDs.

The output of a formal review meeting includes a set of accepted
RIDs. Each review meeting should end with a decision whether another
review meeting is necessary. It is quite possible to proceed to the AD phase
with some actions outstanding, which should be relatively minor or have
agreed solutions already defined.

2.7 PLANNING THE ARCHITECTURAL DESIGN PHASE

Plans of AD phase activities must be drawn up in the SR phase.
Generation of the plans for the AD phase is discussed in chapter 6 of this
document. These plans should cover project management, configuration
management, verification and validation and quality assurance. Outputs are
the:
• Software Project Management Plan for the AD phase (SPMP/AD);
• Software Configuration Management Plan for the AD phase (SCMP/AD);
• Software Verification and Validation Plan for the AD phase (SVVP/AD);
• Software Quality Assurance Plan for the AD phase (SQAP/AD).

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 19
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

CHAPTER 3
 METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

3.1 INTRODUCTION

Analysis is the study of a problem, prior to taking some action. The
SR phase may be called the ‘analysis phase' of ESA PSS-05-0 life cycle. The
analysis should be carried out using a recognised method, or combination
of methods, suitable for the project. The method selected should define
techniques for:
• constructing a logical model;
• specifying the software requirements.

This guide does not provide an exhaustive, authoritative description
of any particular method. The references should be consulted to obtain that
information. This guide seeks neither to make any particular method a
standard nor to define a complete set of acceptable methods. Each project
should examine its needs, choose a method and define and justify the
selection in the SRD. To assist in making this choice, this chapter
summarises some well-known methods and indicates how they can be
applied in the SR phase. Possible methods are:
• functional decomposition;
• structured analysis;
• object-oriented analysis;
• formal methods;
• Jackson System Development;
• rapid prototyping.

Although the authors of any particular method will argue for its
general applicability, all of the methods appear to have been developed with
a particular type of system in mind. It is necessary to look at the examples
and case histories to decide whether a method is suitable.

3.2 FUNCTIONAL DECOMPOSITION

Functional decomposition is the traditional method of analysis. The
emphasis is on ‘what' functionality must be available, not ‘how' it is to be

20 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

implemented. The functional breakdown is constructed top-down,
producing a set of functions, subfunctions and functional interfaces. See
Section 2.3.1.

The functional decomposition method was incorporated into the
structured analysis method in the late 1970's.

3.3 STRUCTURED ANALYSIS

Structured analysis is a name for a class of methods that analyse a
problem by constructing data flow models. Members of this class are:
• Yourdon methods (DeMarco and Ward/Mellor);
• Structured Systems Analysis and Design Methodology (SSADM);
• Structured Analysis and Design Technique (SADT 1).

Structured analysis includes all the concepts of functional
decomposition, but produces a better functional specification by rigourously
defining the functional interfaces, i.e. the data and control flow between the
processes that perform the required functions. The ubiquitous ‘Data Flow
Diagram' is characteristic of structured analysis methods.

Yourdon methods [Ref. 7, 12] are widely used in the USA and
Europe. SSADM [Ref. 4, 9] is recommended by the UK government for ‘data
processing systems'. It is now under the control of the British Standards
Institute (BSI) and will therefore become a British Standard. SADT [Ref. 17,
20] has been successfully used within ESA for some time. Structured
analysis methods are expected to be suitable for the majority of ESA
software projects.

 According to its early operational definition by DeMarco, structured
analysis is the use of the following techniques to produce a specification of
the system required:
• Data Flow Diagrams;
• Data Dictionary;
• Structured English;
• Decision Tables;

1 trademark of SoftTech Inc, Waltham, Mass., USA.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 21
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

• Decision Trees.

These techniques are adequate for the analysis of ‘information
systems'. Developments of structured analysis for ‘real-time' or ‘embedded
systems', have supplemented this list with:
• Transformation Schema;
• State-Transition Diagrams;
• Event Lists;
• Data Schema;
• Precondition-Postcondition Specifications.

SSADM, with its emphasis on data modelling, also includes:
• Entity-Relationship Diagrams (or Entity Models);
• Entity Life Histories.

The methods of structured analysis fall into the groups shown in
Table 3.3 according to whether they identify, organise or specify functions or
entities.

Activity Technique
Function Identification Event Lists

Entity Life Histories
Function Organisation Data Flow Diagrams

Transformation Schema
Actigrams

Function Specification Structured English
Decision Tables
Decision Trees

State-Transition Diagrams
Transition Tables

Precondition-Postconditions
Entity Identification "Spot the nouns in the description"
Entity Organisation Data Structure Diagrams

Data Schema
Entity-Relationship Diagrams

Entity Specification Data Dictionary

Table 3.3: Structured Analysis Techniques

Structured analysis aims to produce a ‘Structured Specification'
containing a systematic, rigourous description of a system. This description
is in terms of system models. Analysis and design of the system is a model-
making process.

22 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

3.3.1 DeMarco/SSADM modelling approach

The DeMarco and SSADM methods create and refine the system
model through four stages:
• current physical model;
• current logical model;
• required logical model;
• required physical model.

In ESA projects, the goal of the SR phase should be to build a
required logical model. The required physical model incorporates
implementation considerations and its construction should be deferred to
the AD phase.

The DeMarco/SSADM modelling approach assumes that a system
is being replaced. The current physical model describes the present way of
doing things. This must be rationalised, to make the current logical model,
and then combined with the ‘problems and requirements list' of the users to
construct the required logical model.

 This evolutionary concept can be applied quite usefully in ESA
projects. Most systems have a clear ancestry, and much can be learned by
studying their predecessors. This prevents people from ‘reinventing wheels'.
The URD should always describe or reference similar systems so that the
developer can best understand the context of the user requirements. ESA
PSS-05-0 explicitly demands that the relationship to predecessor projects be
documented in the SRD. If a system is being replaced and a data
processing system is required, then the DeMarco/SSADM approach is
recommended.

The DeMarco/SSADM modelling approach is difficult to apply
directly when the predecessor system was retired some time previously or
does not exist. In such cases the developer of a data processing system
should look at the DeMarco/SSADM approach in terms of the activities that
must be done in each modelling stage. Each activity uses one or more of
the techniques described in Table 3.3. When it makes no sense to think in
terms of ‘current physical models' and ‘current logical models', the developer
should define an approach that is suitable for the project. Such a tailored
approach should include activities used in the standard modelling stages.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 23
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

3.3.2 Ward/Mellor modelling approach

Ward and Mellor describe an iterative modelling process that first
defines the top levels of an ‘essential model'. Instead of proceeding
immediately to the lower levels of the essential model, Ward and Mellor
recommend that the top levels of an ‘implementation model' are built. The
cycle continues with definition of the next lower level of the essential model.
This stops the essential model diverging too far from reality and prevents the
implementation model losing coherence and structure.

The essential model is a kind of logical model. It describes what the
system must do to be successful, regardless of the technology chosen to
implement it. The essential model is built by first defining the system's
environment and identifying the inputs, outputs, stimuli and responses it
must handle. This is called ‘environmental modelling'. Once the environment
is defined, the innards of the system are defined, in progressive detail, by
relating inputs to outputs and stimuli to responses. This is called
‘behavioural modelling' and supersedes the top-down functional
decomposition modelling approach.

 ESA real-time software projects should consider using the
Ward/Mellor method in the SR phase. The developer should not, however,
attempt to construct the definitive implementation model in the SR phase.
This task should be done in the AD phase. Instead, predefined design
constraints should be used to outline the implementation model and steer
the development of the essential model.

3.3.3 SADT modelling approach

There are two stages of requirements definition in SADT:
• context analysis;
• functional specification.

The purpose of context analysis is to define the boundary conditions
of the system. ‘Functional specification' defines what the system has to do.
The output of the functional specification stage is a ‘functional architecture',
which should be expressed using SADT diagrams.

The functional architecture is a kind of logical model. It is derived
from a top-down functional decomposition of the system, starting from the
context diagram, which shows all the external interfaces of the system. Data
should be decomposed in parallel with the functions.

24 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

In the SR phase, SADT diagrams can be used to illustrate the data
flow between functions. Mechanism flows should be suppressed. Control
flows may be necessary to depict real-time processing.

3.4 OBJECT-ORIENTED ANALYSIS

Object-oriented analysis is the name for a class of methods that
analyse a problem by studying the objects in the problem domain. For
example some objects that might be important in a motor vehicle simulation
problem are engines and gearboxes.

Object-oriented analysis can be viewed as a synthesis of the object
concepts pioneered in the Simula67 and Smalltalk programming languages,
and the techniques of structured analysis, particularly data modelling.
Object-oriented analysis differs from structured analysis by:
• building an object model first, instead of the functional model (i.e.

hierarchy of data flow diagrams);
• integrating objects, attributes and operations, instead of separating

them between the data model and the functional model.

OOA has been quite successful in tackling problems that are
resistant to structured analysis, such as user interfaces. OOA provides a
seamless transition to OOD and programming in languages such as
Smalltalk, Ada and C++, and is the preferred analysis method when object-
oriented methods are going to be used later in the life cycle. Further, the
proponents of OOA argue that the objects in a system are more
fundamental to its nature than the functions it provides. Specifications
based on objects will be more adaptable than specifications based on
functions.

The leading OOA methods are:
• Coad-Yourdon;
• Rumbaugh et al’s Object Modelling Technique (OMT);
• Shlaer-Mellor;
• Booch.

OOA methods are evolving, and analysts often combine the
techniques of different methods when analysing problems. Users of OOA
methods are recommended to adopt such a pragmatic approach.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 25
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

3.4.1 Coad and Yourdon

Coad and Yourdon [Ref. 18] describe an Object-Oriented Analysis
(OOA) method based on five major activities:
• finding classes and objects;
• identifying structures;
• identifying subjects;
• defining attributes;
• defining services.

These activities are used to construct each layer of a ‘five-layer’
object model.

Objects exist in the problem domain. Classes are abstractions of
the objects. Objects are instances of classes. The first task of the method is
to identify classes and objects.

The second task of the method is to identify structures. Two kinds of
structures are recognised: ‘generalisation- specialisation structures' and
‘whole-part structures'. The former type of structure is like a family tree, and
inheritance is possible between members of the structure. The latter kind of
structure is used to model entity relationships (e.g. each motor contains one
armature).

Large, complex models may need to be organised into ‘subjects’,
with each subject supporting a particular view of the problem. For example
the object model of a motor vehicle might have a mechanical view and
electrical view.

Attributes characterise each class. For example an attribute of an
engine might be ‘number of cylinders’. Each object will have value for the
attribute.

Services define what the objects do. Defining the services is
equivalent to defining system functions.

The strengths of Coad and Yourdon’s method are its brief, concise
description and its use of general texts as sources of definitions, so that the
definitions fit common sense and jargon is minimised. The main weakness
of the method is its complex notation, which is difficult to use without tool
support. Some users of the Coad-Yourdon method have used the OMT
diagramming notation instead.

26 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

3.4.2 OMT

Rumbaugh et al’s Object Modelling Technique (OMT) [Ref 25]
transforms the users’ problem statement (such as that documented in a
User Requirement Document) into three models:
• object model;
• dynamic model;
• functional model.

The three models collectively make the logical model required by
ESA PSS-05-0.

The object model shows the static structure in the real world. The
procedure for constructing it is:
• identify objects;
• identify classes of objects;
• identify associations (i.e. relationships) between objects;
• identify object attributes;
• use inheritance to organise and simplify class structure;
• organise tightly coupled classes and associations into modules;
• supply brief textual descriptions on each object.

Important types of association are ‘aggregation’ (i.e. is a part of)
and ‘generalisation’ (i.e. is a type of).

The dynamic model shows the behaviour of the system, especially
the sequencing of interactions. The procedure for constructing it is:
• identify sequences of events in the problem domain and document

them in ‘event traces’;
• build a state-transition diagram for each object that is affected by the

events, showing the messages that flow, actions that are performed
and object state changes that take place when events occur.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 27
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

The functional model shows how values are derived, without regard
for when they are computed. The procedure for constructing it is not to use
functional decomposition, but to:
• identify input and output values that the system receives and produces;
• construct data flow diagrams showing how the output values are

computed from the input values;
• identify objects that are used as ‘data stores’;
• identify the object operations that comprise each process.

The functional model is synthesised from object operations, rather
than decomposed from a top level function. The operations of objects may
be defined at any stage in modelling.

The strengths of OMT are its simple yet powerful notation
capabilities and its maturity. It was applied in several projects by its authors
before it was published. The main weakness is the lack of techniques for
integrating the object, dynamic and functional models.

3.4.3 Shlaer-Mellor

Shlaer and Mellor begin analysis by identifying the problem domains
of the system. Each domain ‘is a separate world inhabited by its own
conceptual entities, or objects’ [Ref 26, 27]. Large domains are partitioned
into subsystems. Each domain or subsystem is then separately analysed in
three steps:
• information modelling;
• state modelling;
• process modelling.

The three modelling activities collectively make the logical model
required by ESA PSS-05-0.

The goal of information modelling is to identify the:
• objects in the subsystem
• attributes of each object;
• relationships between each object.

The information model is documented by means of diagrams and
definitions of the objects, attributes and relationships.

28 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

The goal of state modelling is to identify the:
• states of each object, and the actions that are performed in them;
• events that cause objects to move from one state to another;
• sequences of states that form the life cycle of each object;
• sequences of messages communicating events that flow between

objects and subsystems.

State models are documented by means of state model diagrams,
showing the sequences of states, and object communication model
diagrams, showing the message flows between states.

The goal of process modelling is to identify the:
• operations of each object required in each action;
• attributes of each object that are stored in each action.

Process models are documented by means of action data flow
diagrams, showing operations and data flows that occur in each action, an
object access model diagrams, showing interobject data access. Complex
processes should also be described.

The strengths of the Shlaer-Mellor method are its maturity (its
authors claim to have been developing it since 1979) and existence of
techniques for integrating the information, state and process models. The
main weakness of the method is its complexity.

3.4.4 Booch

Booch models an object-oriented design in terms of a logical view,
which defines the classes, objects, and their relationships, and a physical
view, which defines the module and process architecture [Ref. 28]. The
logical view corresponds to the logical model that ESA PSS-05-0 requires
software engineers to construct in the SR phase. The Booch object-oriented
method has four steps:
• identify the classes and objects at a given level of abstraction;
• identify the semantics of these classes and objects;
• identify the relationships among these classes and objects;
• implement the classes and objects.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 29
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

The first three steps should be completed in the SR phase. The last
stage is performed in the AD and DD phases. Booch asserts that the
process of object-oriented design is neither top-down nor bottom-up but
something he calls ‘round-trip gestalt design’. The process develops a
system incrementally and iteratively. Users of the Booch method are advised
to bundle the SR and AD phases together into single ‘modelling phase’.

Booch provides four diagramming techniques for documenting the
logical view:
• class diagrams, which are used to show the existence of classes and

their relationships;
• object diagrams, which are used to show the existence of objects and

their behaviour, especially with regard to message communication;
• state-transition diagrams, which show the possible states of each class,

and the events that cause transitions from one state to another;
• timing diagrams, which show the sequence of the objects’ operations.

Booch’s books on object-oriented methods have been described by
Stroustrup, the inventor of C++, as the only books worth reading on the
subject. This compliment reflects the many insights into good analysis and
design practise in his writings. However Booch’s notation is cumbersome
and few tools are available.

3.5 FORMAL METHODS

A Formal Method should be used when it is necessary to be able to
prove that certain consequences will follow specified actions. Formal
Methods must have a calculus, to allow proofs to be constructed. This
makes rigourous verification possible.

 Formal Methods have been criticised for making specifications
unintelligible to users. In the ESA PSS-05-0 life cycle, the URD provides the
user view of the specification. While the primary user of the SRD is the
developer, it does have to be reviewed by other people, and so explanatory
notes should be added to ensure that the SRD can be understood by its
readership.

 Like mathematical treatises, formal specifications contain theorems
stating truths about the system to be built. Verification of each theorem is
done by proving it from the axioms of the specification. This can,
unfortunately, lead to a large number of statements. To avoid this problem,

30 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

the ‘rigourous' approach can be adopted where shorter, intuitive
demonstrations of correctness are used [Ref. 11]. Only critical or
problematical statements are explicitly proved.

Formal Methods should be considered for the specification of
safety-critical systems, or where there are severe availability or security
constraints. There are several Formal Methods available, some of that are
summarised in the table below. Z, VDM and LOTOS are discussed in more
detail. Table 3.5 lists the more common formal methods.

Method Reference Summary
Z 10 Functional specification method for sequential

programs
VDM

Vienna
Development

Method

11 Functional specification and development
method for sequential programs.

LOTOS
Language Of

Temporal
Ordering

Specification

IS 8807 Formal Method with an International Standard.
Combination of CCS, CSP and the abstract data
typing language ACT ONE. Tools are available.

CSP
Communicating

Sequential
Processes

14 Design language for asynchronous parallelism
with synchronous communication. Influenced by
JSD and CCS.

OBJ 15 Functional specification language and
prototyping tool for sequential programs. Objects
(i.e. abstract data types) are the main
components of OBJ specifications.

CCS
Calculus for

Communicating
Systems

16 Specification and design of concurrent behaviour
of systems. Calculus for asynchronous
parallelism with synchronous communication.
Used in protocol and communications work. See
CSP.

Petri Nets 19 Modelling of concurrent behaviour of systems

Table 3.5: Summary of Formal Methods

3.5.1 Z

Z is a model-oriented specification method based on set theory and
first order predicate calculus. The set theory is used to define and organise
the entities the software deals with. The predicate calculus is used to define
and organise the activities the entities take part in, by stating truths about
their behaviour.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 31
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

Z can be used in the SR phase to permit mathematical modelling
the functional behaviour of software. Z is suitable for the specification of
sequential programs. Its inability to model concurrent processes makes it
unsuitable for use in real-time software projects. To overcome this deficiency
Z is being combined with another Formal Method, CSP.

Z specifications can be easily adapted to the requirements of an
SRD. Z specifications contain:
• an English language description of all parts of the system;
• a mathematical definition of the system's components;
• consistency theorems;
• other theorems stating important consequences.

3.5.2 VDM

The ‘Vienna Development Method' (VDM) is a model-oriented
specification and design method based on set theory and Precondition-
Postcondition specifications. The set theory is used to define and organise
the entities the software deals with. The condition specifications are used to
define and organise the activities the entities take part in by stating truths
about their behaviour.

VDM uses a top-down method to develop a system model from a
high-level definition, using abstract data types and descriptions of external
operations, to a low-level definition in implementation-oriented terms. This
‘contractual' process, whereby a given level is the implementation of the
level above and the requirements for the level below, is called ‘reification'.
The ability to reason from specification through to implementation is a major
feature of VDM.

VDM can be used in the SR phase to permit mathematical
modelling the functional behaviour of software. VDM specifications can be
easily adapted to the requirements of an SRD.

32 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

• VDM specifications contain a:
• description of the state of the system (a mathematical definition of the

system components);
• list of data types and invariants;
• list of Precondition-Postcondition specifications.

VDM is generally considered to be deficient in some areas,
specifically:
• it is not possible to define explicitly operations (i.e the precondition-

postcondition technique does not describe how state variables are
changed);

• it is not possible to specify concurrency (making it unsuitable for real-
time applications);

• the underlying structure is not modular;
• the specification language lacks abstract and generic features.

3.5.3 LOTOS

LOTOS (Language Of Temporal Ordering Specification) is a formal
description technique defined by the International Standardisation
Organisation (ISO). It is the only analysis method that is an ISO standard. It
was originally developed for use on the Open Systems Interconnection (OSI)
standards, but is especially suitable for the specification of distributed
processing systems.

LOTOS has two integrated components:
• a ‘process algebra' component, which is based on a combination of

Calculus of Communicating Systems (CCS, ref 16) and Communicating
Sequential Processes (CSP, ref 14);

• a ‘data type' component that is based on the algebraic specification
language ACT ONE.

LOTOS is both ‘executable' (i.e., the specified behaviour may be
simulated), and amenable to proof techniques (due to its algebraic
properties).

LOTOS encourages developers to work in a structured manner
(either top-down or bottom-up), and may be used in several different
fashions. Various ‘LOTOS specification styles' have been identified and

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 33
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

documented, ranging from ‘constraint-oriented' where constraints on, or
properties of, the system are specified in isolation from any internal
processing mechanisms, to ‘monolithic' where the system's behaviour is
captured as a tree of alternatives.

Each style has its own strengths; the ‘constraint-oriented' style
provides a high-level specification of the system and is a powerful way to
impose separation of concerns. The ‘monolithic' style may be viewed as a
much lower level system description that can be transformed into an
implementation with relative ease. Two or more styles are often applied in
concert, and a LOTOS specification may be refined in much the same way
as an English language system requirements specification would be refined
into an architectural design and then a detailed design. An obvious benefit
of using LOTOS in this way is that each refinement may be verified (i.e.
preservation of system properties from a high-level specification to a lower-
level specification may be proven).

3.6 JACKSON SYSTEM DEVELOPMENT

Jackson System Development (JSD) analysis techniques are
[Ref.13]:
• Structure Diagrams;
• Structure Text;
• System Specification Diagrams.

Unlike structured analysis, which is generally known by its
techniques, JSD is best characterised by:
• emphasis on the need to develop software that models the
• behaviour of the things in the real world it is concerned with;
• emphasis on the need to build in adaptability by devising a model that

defines the possible system functions;
• avoidance of the top-down approach in favour of a subject-matter

based approach.

The term ‘model' has a specific meaning in JSD. A model is ‘a
realisation, in the computer, of an abstract description of the real world' [Ref.
13]. Since the real world has a time dimension it follows that the model will
be composed of one or more ‘sequential' processes. Each process is

34 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

identified by the entities that it is concerned with. The steps in each process
describe the (sequential) events in the life cycle of the entity.

A JSD model is described in a ‘System Specification' and is, in
principle, directly executable. However this will only be the case if each
process can be directly mapped to a processor. For example there may be
a one-to-one relationship between a telescope and the computer that
controls it, but there is a many-to-one relationship between a bank customer
and the computer that processes customer transactions (many customers,
one computer). JSD implementations employ a ‘scheduling' process to
coordinate many concurrent processes running on a single processor.

Structured analysis concentrates on devising a ‘data model' (hence
Data Flow Diagrams and Data Dictionaries). While this may be quite proper
for information systems it is sometimes not very helpful when building real-
time systems. The JSD method attempts to correct this deficiency by
concentrating on devising a ‘process model' that is more suited to real-time
applications. Application of JSD to information systems is likely to be more
difficult than with structured methods, but should be considered where
adaptability is a very high priority constraint requirement.

Table 3.6 shows what JSD development activities should take place
in the SR phase.

JSD Activity
Level 0 Level 1 Level 2 Level 3

Develop Write Entity-Action
List

Specify Model of
Reality

Model Abstractly Draw Entity-
Structure Diagrams

Specification Define initial
versions of model

processes
Specify System

Functions
Add functions to
model processes

Add timing
constraints

Table 3.6: SR phase JSD development activities

3.7 RAPID PROTOTYPING

A prototype is a ‘concrete executable model of selected aspects of
a proposed system' [Ref. 5]. If the requirements are not clear, or suspected
to be incomplete, it can be useful to develop a prototype based on tentative
requirements to explore what the software requirements really are. This is

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 35
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

called ‘exploratory prototyping'. Prototypes can help define user interface
requirements.

Rapid Prototyping is ‘the process of quickly building and evaluating
a series of prototypes' [Ref. 6]. Specification and development are iterative.

Rapid Prototyping can be incorporated within the ESA PSS-05-0 life
cycle if the iteration loop is contained within a phase.

The development of an information system using 4GLs would
contain the loop:

repeat until the user signs off the SRD
analyse requirements
create data base
create user interface
add selected functions
review execution of prototype with user

Requirements should be analysed using a recognised method,
such as structured analysis, and properly documented in an SRD. Rapid
Prototyping needs tool support, otherwise the prototyping may not be rapid
enough to be worthwhile.

 The prototype's operation should be reviewed with the user and the
results used to formulate the requirements in the SRD. The review of the
execution of a prototype with a user is not a substitute for the SR review.

Rapid Prototyping can also be used with an Evolutionary
Development life cycle approach. A Rapid Prototyping project could consist
of several short-period life cycles. Rapid Prototyping tools would be used
extensively in the early life cycles, permitting the speedy development of the
first prototypes. In later life cycles the product is optimised, which may
require new system-specific code to be written.

Software written to support the prototyping activity should not be
reused in later phases - the prototypes are ‘throwaways'. To allow
prototypes to be built quickly, design standards and software requirements
can be relaxed. Since quality should be built into deliverable software from
its inception, it is bad practice to reuse prototype modules in later phases.
Such modules are likely to have interfaces inconsistent with the rest of the
design. It is permissible, of course, to use ideas present in prototype code in
the DD phase.

36 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
METHODS FOR SOFTWARE REQUIREMENTS DEFINITION

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 37
TOOLS FOR SOFTWARE REQUIREMENTS DEFINITION

CHAPTER 4
 TOOLS FOR SOFTWARE REQUIREMENTS DEFINITION

4.1 INTRODUCTION

This chapter discusses the tools for constructing a logical model
and specifying the software requirements. Tools can be combined to suit
the needs of a particular project.

4.2 TOOLS FOR LOGICAL MODEL CONSTRUCTION

In all but the smallest projects, CASE tools should be used during
the SR phase. Like many general purpose tools, such as word processors
and drawing packages, a CASE tool should provide:
• a windows, icons, menu and pointer (WIMP) style interface for the easy

creation and editing of diagrams;
• a what you see is what you get (WYSIWYG) style interface that ensures

that what is created on the display screen is an exact image of what will
appear in the document.

 Method-specific CASE tools offer the following advantages over
general purpose tools:
• enforcement of the rules of the methods;
• consistency checking;
• ease of modification;
• automatic traceability of user requirements through to the software

requirements;
• built-in configuration management.

Tools should be selected that have an integrated data dictionary or
‘repository' for consistency checking. Developers should check that a tool
supports the method that they intend to use. Appendix E contains a more
detailed list of desirable tool capabilities.

Configuration management of the model description is essential.
The model should evolve from baseline to baseline during the SR phase,
and the specification and enforcement of procedures for the identification,
change control and status accounting of the model description are

38 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
TOOLS FOR SOFTWARE REQUIREMENTS DEFINITION

necessary. In large projects, configuration management tools should be
used.

4.3 TOOLS FOR SOFTWARE REQUIREMENTS SPECIFICATION

4.3.1 Software requirements management

For large systems, a database management system (DBMS) for
storing the software requirements becomes invaluable for maintaining
consistency and accessibility. Desirable capabilities of a requirements
DBMS are:
• insertion of new requirements;
• modification of existing requirements;
• deletion of requirements;
• storage of attributes (e.g. identifier) with the text;
• selecting by requirement attributes and text strings;
• sorting by requirement attributes and text strings;
• cross-referencing;
• change history recording;
• access control;
• display;
• printing, in a variety formats.

4.3.2 Document production

A word processor or text processor should be used for producing a
document. Tools for the creation of paragraphs, sections, headers, footers,
tables of contents and indexes all facilitate the production of a document. A
spell checker is desirable. An outliner may be found useful for creation of
subheadings, for viewing the document at different levels of detail and for
rearranging the document. The ability to handle diagrams is very important.

Documents invariably go through many drafts as they are created,
reviewed and modified. Revised drafts should include change bars.
Document comparison programs, which can mark changed text
automatically, are invaluable for easing the review process.

 Tools for communal preparation of documents are now beginning
to be available, allowing many authors to comment and add to a single
document in a controlled manner.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 39
THE SOFTWARE REQUIREMENTS DOCUMENT

CHAPTER 5
 THE SOFTWARE REQUIREMENTS DOCUMENT

5.1 INTRODUCTION

The purpose of an SRD is to be an authoritative statement of ‘what'
the software is to do. An SRD must be complete (SR11) and cover all the
requirements stated in the URD (SR12).

The SRD should be detailed enough to allow the implementation of
the software without user involvement. The size and content of the SRD
should, however, reflect the size and complexity of the software product. It
does not, however, need to cover any implementation aspects, and,
provided that it is complete, the smaller the SRD, the more readable and
reviewable it is.

The SRD is a mandatory output (SR10) of the SR phase and has a
definite role to play in the ESA PSS-05-0 documentation scheme. SRD
authors should not go beyond the bounds of that role. This means that:
• the SRD must not include implementation details or terminology, unless

it has to be present as a constraint (SR15);
• descriptions of functions must say what the software is to do,
• and must avoid saying how it is to be done (SR16);
• the SRD must avoid specifying the hardware or equipment, unless it is a

constraint placed by the user (SR17).

5.2 STYLE

The SRD should be systematic, rigourous, clear, consistent and
modifiable. Wherever possible, software requirements should be stated in
quantitative terms to increase their verifiability.

5.2.1 Clarity

An SRD is ‘clear' if each requirement is unambiguous and its
meaning is clear to all readers.

40 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DOCUMENT

 If a requirements specification language is used, explanatory text,
written in natural language, should be included in the SRD to make it
understandable to those not familiar with the specification language.

5.2.2 Consistency

The SRD must be consistent (SR14). There are several types of
inconsistency:
• different terms used for the same thing;
• the same term used for different things;
• incompatible activities happening at the same time;
• activities happening in the wrong order.

Where a term could have multiple meanings, a single meaning for
the term should be defined in a glossary, and only that meaning should be
used throughout.

 An SRD is consistent if no set of individual requirements conflict.
Methods and tools help consistency to be achieved.

5.2.3 Modifiability

Modifiability enables changes to be made easily, completely, and
consistently.

When requirements duplicate or overlap one another, cross-
references should be included to preserve modifiability.

5.3 EVOLUTION

The SRD should be put under formal change control by the
developer as soon as it is approved. New requirements may need to be
added and old requirements may have to be modified or deleted. If the SRD
is being developed by a team of people, the control of the document may
need to be started at the beginning of the SR phase.

The Software Configuration Management Plan for the SR phase
should have defined a formal change process to identify, control, track and
report projected changes as soon as they are initially identified. Approved
changes in requirements must be recorded in the SRD by inserting

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 41
THE SOFTWARE REQUIREMENTS DOCUMENT

document change records and a document status sheet at the start of the
SRD.

5.4 RESPONSIBILITY

Whoever actually writes the SRD, the responsibility for it lies with the
developer. The developer should nominate people with proven analytical
skills to write the SRD. Members of the design and implementation team
may take part in the SR/R as they can advise on the technical feasibility of
requirements.

5.5 MEDIUM

It is usually assumed that the SRD is a paper document. It may be
distributed electronically to participants who have access to the necessary
equipment.

5.6 CONTENT

The SRD must be compiled according to the table of contents
provided in Appendix C of ESA PSS-05-0 (SR18). This table of contents is
derived from ANSI/IEEE Std 830-1984 ‘Software Requirements
Specifications'[Ref. 3]. The description of the model is the only significant
addition.

Section 1 should briefly describe the purpose of both the SRD and
the product. Section 2 should provide a general description of the project
and the product. Section 3 should contain the definitive material about what
is required. Appendix A should contain a glossary of terms. Large SRDs
(forty pages or more) should also contain an index.

References should be given where appropriate. An SRD should not
refer to documents that follow it in the ESA PSS-05-0 life cycle. An SRD
should contain no TBCs or TBDs by the time of the Software Requirements
Review.

Service Information:
a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change Records made since last issue

42 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DOCUMENT

1 INTRODUCTION
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview

2 GENERAL DESCRIPTION
2.1 Relation to current projects
2.2 Relation to predecessor and successor projects
2.3 Function and purpose
2.4 Environmental considerations
2.5 Relation to other systems
2.6 General constraints
2.7 Model description

3 SPECIFIC REQUIREMENTS
(The subsections may be regrouped around high-level functions)

3.1 Functional requirements
3.2 Performance requirements
3.3 Interface requirements
3.4 Operational requirements
3.5 Resource requirements
3.6 Verification requirements
3.7 Acceptance testing requirements
3.8 Documentation requirements
3.9 Security requirements
3.10 Portability requirements
3.11 Quality requirements
3.12 Reliability requirements
3.13 Maintainability requirements
3.14 Safety requirements

4 REQUIREMENTS TRACEABILITY MATRIX

Relevant material unsuitable for inclusion in the above contents list
should be inserted in additional appendices. If there is no material for a
section then the phrase ‘Not Applicable' should be inserted and the section
numbering preserved.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 43
THE SOFTWARE REQUIREMENTS DOCUMENT

5.6.1 SRD/1 Introduction

5.6.1.1 SRD/1.1 Purpose (of the document)

This section should:

(1) define the purpose of the particular SRD;

(2) specify the intended readership of the SRD.

5.6.1.2 SRD/1.2 Scope (of the software)

This section should:

(1) identify the software product(s) to be produced by name;

(2) explain what the proposed software will do (and will not do, if
necessary);

(3) describe the relevant benefits, objectives and goals as precisely as
possible;

(4) be consistent with similar statements in higher-level specifications, if
they exist.

5.6.1.3 SRD/1.3 Definitions, acronyms and abbreviations

This section should provide definitions of all terms, acronyms, and
abbreviations needed for the SRD, or refer to other documents where the
definitions can be found.

5.6.1.4 SRD/1.4 References

This section should provide a complete list of all the applicable and
reference documents. Each document should be identified by its title, author
and date. Each document should be marked as applicable or reference. If
appropriate, report number, journal name and publishing organisation
should be included.

44 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DOCUMENT

5.6.1.5 SRD/1.5 Overview (of the document)

This section should:

(1) describe what the rest of the SRD contains;

(2) explain how the SRD is organised.

5.6.2 SRD/2 General Description

This chapter should describe the general factors that affect the
product and its requirements. It does not state specific requirements; it only
makes those requirements easier to understand.

5.6.2.1 SRD/2.1 Relationship to current projects

This section should describe the context of the project in relation to
current projects. This section should identify any other relevant projects the
developer is carrying out for the initiator. The project may be independent of
other projects or part of a larger project.

Any parent projects should be identified. A detailed description of
the interface of the product to the larger system should, however, be
deferred until Section 2.5.

5.6.2.2 SRD/2.2 Relationship to predecessor and successor projects

This section should describe the context of the project in relation to
past and future projects. This section should identify projects that the
developer has carried out for the initiator in the past and also any projects
the developer may be expected to carry out in the future, if known.

If the product is to replace an existing product, the reasons for
replacing that system should be summarised in this section.

5.6.2.3 SRD/2.3 Function and purpose

This section should discuss the purpose of the product. It should
expand upon the points made in Section 1.2.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 45
THE SOFTWARE REQUIREMENTS DOCUMENT

5.6.2.4 SRD/2.4 Environmental considerations

 This section should summarise:
• the physical environment of the target system, i.e. where is the system

going to be used and by whom? The URD section called ‘User
Characteristics' may provide useful material on this topic.

• the hardware environment in the target system, i.e. what computer(s)
does the software have to run on?

• the operating environment in the target system, i.e. what operating
systems are used?

• the hardware environment in the development system, i.e. what
computer(s) does the software have to be developed on?

• the operating environment in the development system, i.e. what
software development environment is to be used? or what software
tools are to be used?

5.6.2.5 SRD/2.5 Relation to other systems

This section should describe in detail the product's relationship to
other systems, for example is the product:
• an independent system?
• a subsystem of a larger system?
• replacing another system?

If the product is a subsystem then this section should:
• summarise the essential characteristics of the larger system;
• identify the other subsystems this subsystem will interface with;
• summarise the computer hardware and peripheral equipment to be

used.

 A block diagram may be presented showing the major components
of the larger system or project, interconnections, and external interfaces.

The URD contains a section ‘Product Perspective' that may provide
relevant material for this section.

46 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DOCUMENT

5.6.2.6 SRD/2.6 General constraints

This section should describe any items that will limit the developer's
options for building the software. It should provide background information
and seek to justify the constraints. The URD contains a section called
‘General Constraints' that may provide relevant material for this section.

5.6.2.7 SRD/2.7 Model description

This section should include a top-down description of the logical
model. Diagrams, tables and explanatory text may be included.

 The functionality at each level should be described, to enable the
reader to ‘walkthrough' the model level-by-level, function-by-function, flow-
by-flow. A bare-bones description of a system in terms of data flow
diagrams and low-level functional specifications needs supplementary
commentary. Natural language is recommended.

5.6.3 SRD/3 Specific Requirements

The software requirements are detailed in this section. Each
requirement must include an identifier (SR04). Essential requirements must
be marked as such (SR05). For incremental delivery, each software
requirement must include a measure of priority so that the developer can
decide the production schedule (SR06). References that trace the software
requirements back to the URD must accompany each software requirement
(SR07). Any other sources should be stated. Each software requirement
must be verifiable (SR08).

The functional requirements should be structured top-down in this
section. Non-functional requirements can appear at all levels of the hierarchy
of functions, and, by the inheritance principle, apply to all the functional
requirements below them. Non-functional requirements may be attached to
functional requirements by cross-references or by physically grouping them
together in the document.

If a non-functional requirement appears at a lower level, it
supersedes any requirement of that type that appears at a higher level.
Critical functions, for example, may have more stringent reliability and safety
requirements than those of non-critical functions.

Specific requirements may be written in natural language. This
makes them understandable to non-specialists, but permits inconsistencies,
ambiguity and imprecision to arise. These undesirable properties can be

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 47
THE SOFTWARE REQUIREMENTS DOCUMENT

avoided by using requirements specification languages. Such languages
range in rigour from Structured English to Z, VDM and LOTOS.

Each software requirement must have a unique identifier (SR04).
Forward traceability to subsequent phases in the life cycle depends upon
each requirement having a unique identifier.

Essential software requirements have to be met for the software to
be acceptable. If a software requirement is essential, it must be clearly
flagged (SR05). Non-essential software requirements should be marked with
a measure of desirability (e.g. scale of 1, 2, 3).

The priority of a requirement measures the order, or the timing, of
the related functionality becoming available. If the transfer is to be phased,
so that some parts come into operation before others, each requirement
must be marked with a measure of priority (SR06).

Unstable requirements should be flagged. These requirements may
be dependent on feedback from the UR, SR and AD phases. The usual
method for flagging unstable requirements is to attach the marker ‘TBC'.

The source of each software requirement must be stated (SR07),
using the identifier of a user requirement, a document cross-reference, or
even the name of a person or group. Backwards traceability depends upon
each requirement explicitly referencing its source in the URD or elsewhere.

Each software requirement must be verifiable (SR08). Clarity
increases verifiability. Clarity is enhanced by ensuring that each software
requirement is well separated from the others. A software requirement is
verifiable if some method can be devised for objectively demonstrating that
the software implements it correctly.

5.6.4 SRD/Appendix A Requirements Traceability matrix

This section should contain a table summarising how each user
requirement is met in the SRD (SR13). See Appendix D.

48 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
THE SOFTWARE REQUIREMENTS DOCUMENT

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 49
LIFE CYCLE MANAGEMENT ACTIVITIES

CHAPTER 6
 LIFE CYCLE MANAGEMENT ACTIVITIES

6.1 INTRODUCTION

SR phase activities must be carried out according to the plans
defined in the UR phase (SR01). These are:
• Software Project Management Plan for the SR phase (SPMP/SR);
• Software Configuration Management Plan for the SR phase (SCMP/SR);
• Software Verification and Validation Plan for the SR phase (SVVP/SR);
• Software Quality Assurance Plan for the SR phase (SQAP/SR).

Progress against plans should be continuously monitored by
project management and documented at regular intervals in progress
reports.

Plans for AD phase activities must be drawn up in the SR phase.
These plans cover project management, configuration management,
verification and validation, quality assurance and system tests.

6.2 PROJECT MANAGEMENT PLAN FOR THE AD PHASE

During the SR phase, the AD phase section of the SPMP
(SPMP/AD) must be produced (SPM05). The SPMP/AD describes, in detail,
the project activities to be carried out in the AD phase.

An estimate of the total project cost must be included in the
SPMP/AD (SPM06). Every effort should be made to arrive at a total project
cost estimate with an accuracy better than 30%. In addition, a precise
estimate of the effort involved in the AD phase must be included in the
SPMP/AD (SPM07).

 Technical knowledge and experience gained on similar projects
should be used to produce the cost estimate. Specific factors affecting
estimates for the work required in the AD phase are the:
• number of software requirements;
• level of software requirements;
• complexity of the software requirements;

50 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
LIFE CYCLE MANAGEMENT ACTIVITIES

• stability of software requirements;
• level of definition of external interfaces;
• quality of the SRD.

The function-point analysis method may be of use in the SR phase
for costing data-processing systems [Ref. 23].

If an evolutionary software development or incremental delivery life
cycle is to be used, the SPMP/AD should say so.

Guidance on writing the SPMP/AD is provided in ESA PSS-05-08,
Guide to Software Project Management Planning.

6.3 CONFIGURATION MANAGEMENT PLAN FOR THE AD PHASE

During the SR phase, the AD phase section of the SCMP
(SCMP/AD) must be produced (SCM44). The SCMP/AD must cover the
configuration management procedures for documentation, and any CASE
tool outputs or prototype code, to be produced in the AD phase (SCM45).

Guidance on writing the SCMP/AD is provided in ESA PSS-05-09,
Guide to Software Configuration Management Planning.

6.4 VERIFICATION AND VALIDATION PLAN FOR THE AD PHASE

During the AD phase, the AD phase section of the SVVP (SVVP/AD)
must be produced (SVV12). The SVVP/AD must define how to trace software
requirements to components, so that each software component can be
justified (SVV13). It should describe how the ADD is to be evaluated by
defining the review procedures. It may include specifications of the tests to
be performed with prototypes.

During the SR phase, the developer analyses the user requirements
and may insert ’acceptance-testing requirements' in the SRD. These
requirements constrain the design of the acceptance tests. This must be
recognised in the design of the acceptance tests.

The planning of the system tests should proceed in parallel with the
definition of the software requirements. The developer may identify
‘verification requirements' for the software. These are additional constraints
on the verification activities. These requirements are also stated in the SRD.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) 51
LIFE CYCLE MANAGEMENT ACTIVITIES

Guidance on writing the SVVP/AD is provided in ESA PSS-05-10,
Guide to Software Verification and Validation.

6.5 QUALITY ASSURANCE PLAN FOR THE AD PHASE

During the SR phase, the AD phase section of the SQAP (SQAP/AD)
must be produced (SQA06). The SQAP/AD must describe, in detail, the
quality assurance activities to be carried out in the AD phase (SQA07).

SQA activities include monitoring the following activities:
• management;
• documentation;
• standards, practices, conventions, and metrics;
• reviews and audits;
• testing activities;
• problem reporting and corrective action;
• tools, techniques and methods;
• code and media control;
• supplier control;
• records collection maintenance and retention;
• training;
• risk management.

Guidance on writing the SQAP/AD is provided in ESA PSS-05-11,
Guide to Software Quality Assurance Planning.

The SQAP/AD should take account of all the software requirements
related to quality, in particular:
• quality requirements;
• reliability requirements;
• maintainability requirements;
• safety requirements;
• standards requirements;
• verification requirements;
• acceptance-testing requirements.

52 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
LIFE CYCLE MANAGEMENT ACTIVITIES

The level of monitoring planned for the AD phase should be
appropriate to the requirements and the criticality of the software. Risk
analysis should be used to target areas for detailed scrutiny.

6.6 SYSTEM TEST PLANS

The developer must plan the system tests in the SR phase and
document it in the SVVP (SVV14). This plan should define the scope,
approach, resources and schedule of system testing activities.

Specific tests for each software requirement are not formulated until
the DD phase. The System Test Plan should deal with the general issues, for
example:
• where will the system tests be done?
• who will attend?
• who will carry them out?
• are tests needed for all software requirements?
• must any special test equipment be used?
• how long is the system testing programme expected to last?
• are simulations necessary?

Guidance on writing the SVVP/ST is provided in ESA PSS-05-10,
Guide to Software Verification and Validation.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) A-1
GLOSSARY

APPENDIX A
GLOSSARY

A.1 LIST OF ACRONYMS
AD Architectural Design
ANSI American National Standards Institute
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
CCS Calculus of Communicating Systems
CSP Communicating Sequential Processes
DBMS Database Management System
ESA European Space Agency
IEEE Institute of Electrical and Electronics Engineers
ISO International Standards Organisation
ICD Interface Control Document
LOTOS Language Of Temporal Ordering Specification
OOA Object-Oriented Analysis
OSI Open Systems Interconnection
PA Product Assurance
PSS Procedures, Specifications and Standards
QA Quality Assurance
RID Review Item Discrepancy
SADT Structured Analysis and Design Technique
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SPM Software Project Management
SPMP Software Project Management Plan
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SR Software Requirements
SRD Software Requirements Document
SR/R Software Requirements Review
SSADM Structured Systems Analysis and Design Methodology
ST System Test
SUM Software User Manual
SVVP Software Verification and Validation Plan
TBC To Be Confirmed
TBD To Be Defined
UR User Requirements
URD User Requirements Document
VDM Vienna Development Method

A-2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
GLOSSARY

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) B-1
REFERENCES

APPENDIX B
REFERENCES

1. ESA Software Engineering Standards, ESA PSS-05-0 Issue 2, February
1991.

2. IEEE Standard Glossary for Software Engineering Terminology,
ANSI/IEEE Std 610.12-1990.

3. IEEE Guide to Software Requirements Specifications, ANSI/IEEE Std
830-1984.

4. SSADM Version 4, NCC Blackwell Publications, 1991

5. Software Evolution Through Rapid Prototyping, Luqi, in COMPUTER,
May 1989

6. Structured Rapid Prototyping, J.Connell and L.Shafer, Yourdon Press,
1989.

7. Structured Analysis and System Specification, T.DeMarco, Yourdon
Press, 1978.

8. IEEE Standard for Software Reviews and Audits, IEEE Std 1028-1988.

9. Structured Systems Analysis and Design Methodology, G.Cutts,
Paradigm, 1987.

10. The Z Notation - a reference manual, J.M.Spivey, Prentice-Hall, 1989.

11. Systematic Software Development Using VDM, C.B.Jones, Prentice-
Hall, 1986.

12. Structured Development for Real-Time Systems, P.T.Ward & S.J.Mellor,
Yourdon Press, 1985. (Three Volumes).

13. System Development, M.Jackson, Prentice-Hall, 1983.

14. Communicating Sequential Processes, C.A.R.Hoare, Prentice Hall
International, 1985.

15. Programming with parameterised abstract objects in OBJ, Goguen J
A, Meseguer J and Plaisted D, in Theory and Practice of Software
Technology, North Holland, 1982.

B-2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
REFERENCES

16. A Calculus for Communicating Systems, R.Milner, in Lecture Notes in
Computer Science, No 192, Springer-Verlag.

17. Structured Analysis for Requirements Definition, D.T.Ross and
K.E.Schoman, IEEE Transactions on Software Engineering, Vol SE-3,
No 1, January 1977.

18. Object-Oriented Analysis, P.Coad and E.Yourdon, Second Edition,
Yourdon Press, 1991.

19. Petri Nets, J.L.Petersen, in ACM Computing Surveys, 9(3) Sept 1977.

20. Structured Analysis (SA): A Language for Communicating Ideas,
D.T.Ross, IEEE Transactions on Software Engineering, Vol SE-3, No 1,
January 1977.

21. Principles of Software Engineering Management, T.Gilb, Addison-
Wesley.

22. The STARTs Guide - a guide to methods and software tools for the
construction of large real-time systems, NCC Publications, 1987.

23. Software function, source lines of code, and development effort
prediction: a software science validation, A.J.Albrecht and J.E.Gaffney,
IEEE Transactions on Software Engineering, vol SE-9, No 6, November
1983.

24. Software Reliability Assurance for ESA space systems, ESA PSS-01-
230 Issue 1 Draft 8, October 1991.

25. Object-Oriented Modeling and Design, J.Rumbaugh, M.Blaha,
W.Premerlani, F.Eddy and W.Lorensen, Prentice-Hall, 1991

26. Object-Oriented Systems Analysis - Modeling the World in Data,
S.Shlaer and S.J.Mellor, Yourdon Press, 1988

27. Object Lifecycles - Modeling the World in States, S.Shlaer and
S.J.Mellor, Yourdon Press, 1992.

28. Object-Oriented Design with Applications, G.Booch, Benjamin
Cummings, 1991.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) C-1
MANDATORY PRACTICES

APPENDIX C
MANDATORY PRACTICES

This appendix is repeated from ESA PSS-05-0, Appendix D.3
SR01 SR phase activities shall be carried out according to the plans defined in the

UR phase.
SR02 The developer shall construct an implementation-independent model of

what is needed by the user.
SR03 A recognised method for software requirements analysis shall be adopted

and applied consistently in the SR phase.
SR04 Each software requirement shall include an identifier.
SR05 Essential software requirements shall be marked as such.
SR06 For incremental delivery, each software requirement shall include a measure

of priority so that the developer can decide the production schedule.
SR07 References that trace software requirements back to the URD shall

accompany each software requirement.
SR08 Each software requirement shall be verifiable.
SR09 The outputs of the SR phase shall be formally reviewed during the Software

Requirements Review.
SR10 An output of the SR phase shall be the Software Requirements Document

(SRD).
SR11 The SRD shall be complete.
SR12 The SRD shall cover all the requirements stated in the URD.
SR13 A table showing how user requirements correspond to software

requirements shall be placed in the SRD.
SR14 The SRD shall be consistent.
SR15 The SRD shall not include implementation details or terminology, unless it

has to be present as a constraint.
SR16 Descriptions of functions ... shall say what the software is to do, and must

avoid saying how it is to be done.
SR17 The SRD shall avoid specifying the hardware or equipment, unless it is a

constraint placed by the user.
SR18 The SRD shall be compiled according to the table of contents provided in

Appendix C.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) F-1
REQUIREMENTS TRACEABILITY MATRIX

APPENDIX D
REQUIREMENTS TRACEABILITY MATRIX

REQUIREMENTS TRACEABILITY MATRIX
SRD TRACED TO URD

DATE: <YY-MM-DD>
PAGE 1 OF <nn>

PROJECT: <TITLE OF PROJECT>
URD

IDENTIFIER
SRD

IDENTIFIER
SUMMARY OF

USER REQUIREMENT

E-2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
REQUIREMENTS TRACEABILITY MATRIX

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) F-1
CASE TOOL SELECTION CRITERIA

APPENDIX E
 CASE TOOL SELECTION CRITERIA

This appendix lists selection criteria for the evaluation of CASE tools
for building a logical model.

The tool should:

1. enforce the rules of each method it supports;

2. allow the user to construct diagrams according to the conventions of
the selected method;

3. support consistency checking (e.g. balancing a DFD set);

4. store the model description;

5. be able to store multiple model descriptions;

6. support top-down decomposition (e.g. by allowing the user to create
and edit lower-level DFDs by ‘exploding' processes in a higher-level
diagram);

7. minimise line-crossing in a diagram;

8. minimise the number of keystrokes required to add a symbol;

9. allow the user to ‘tune' a method by adding and deleting rules;

10. support concurrent access by multiple users;

11. permit controlled access to the model database (usually called a
repository);

12. permit reuse of all or part of existing model descriptions, to allow the
bottom-up integration of models (e.g. rather than decompose a high-
level function such as ‘Calculate Orbit', it should be possible to import
a specification of this function from another model);

13. support document generation according to user-defined templates
and formats;

14. support traceability of user requirements to software requirements (and
software requirements through to components and code);

E-2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
CASE TOOL SELECTION CRITERIA

15. support conversion of a diagram from one style to another (e.g.
Yourdon to SADT and vice-versa);

16. allow the user to execute the model (to verify real-time behaviour by
animation and simulation);

17. support all configuration management functions (e.g. to identify items,
control changes to them, storage of baselines etc);

18. keep the users informed of changes when part of a design is
concurrently accessed;

19. support consistency checking in any of 3 checking modes, selectable
by the user:
• interpretative, i.e. check each change as it is made; reject any

illegal changes;
• compiler, i.e. accept all changes and check them all at once at the

end of the session,;
• monitor, i.e. check each change as it is made; issue warnings

about illegal changes;

20. link the checking mode with the access mode when there are multiple
users, so that local changes can be done in any checking mode, but
changes that have non-local effects are checked immediately and
rejected if they are in error;

21. support scoping and overloading of data item names;

22. provide context-dependent help facilities;

23. make effective use of colour to allow parts of a display to be easily
distinguished;

24. have a consistent user interface;

25. permit direct hardcopy output;

26. permit data to be imported from other CASE tools;

27. permit the exporting of data in standard graphics file formats (e.g.
CGM);

28. provide standard word processing functions;

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) F-3
CASE TOOL SELECTION CRITERIA

29. permit the exporting of data to external word-processing applications
and editors;

30. describe the format of tool database (i.e. repository) in the user
documentation, so that users can manipulate the database using
external software and packages (e.g. tables of ASCII data).

E-4 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
CASE TOOL SELECTION CRITERIA

This page is intentionally left blank.

ESA PSS-05-03 Issue 1 Revision 1 (March 1995)) F-1
INDEX

APPENDIX F
INDEX

acceptance-testing requirements, 13, 50
AD phase., 22
adaptability requirements, 16
ANSI/IEEE Std 1028, 17
ANSI/IEEE Std 830-1984, 41
audit, 51
availability, 8, 13, 30
availability requirements., 15
backwards traceability, 47
baseline, 37
Booch, 28
Capability requirements, 8
CASE tool, 50
CASE tools, 5, 37
CFMA, 8
change control, 37, 40
class diagrams, 29
component, 11
components, 50
computer resources, 12
computer viruses, 14
configuration management, 37
constraint, 39
control flow, 11
corrective action, 51
coupling, 6
critical functions, 7
criticality analysis, 8
Data Dictionary, 20, 37
Data Flow Diagrams, 20
DD phase, 18, 52
Decision Tables, 20
Decision Trees, 20
documentation requirements, 13
dynamic model, 26
evolutionary software development, 50
external interfaces, 50
feasibility, 9, 41
FMECA, 8
formal method, 29
formal methods, 19
formal review, 17
forward traceability, 47
FTA, 8
function, 9
functional decomposition, 6
functional model, 26

functional requirements, 9
ICD, 11
incremental delivery life cycle, 50
information modelling, 27
inspections, 5
integrity, 13
interface requirements, 11
life cycle, 35
logical model, 5, 22
logical model', 5
maintainability requirements, 16
media control, 51
method, 19
Methods, 40, 51
metric, 16, 51
metrics, 15
model, 5
MTTR, 16
object diagrams, 29
object model, 26
object-oriented analysis, 24
OMT, 26
operational environment, 12
operational requirements, 12
performance requirements, 8, 10
physical model, 22
portability requirements, 14
problem reporting, 51
process modelling, 27
product assurance, 3
programming language, 14
progress reports, 4, 49
prototype, 8
prototype code, 50
prototypes, 50
prototyping, 8
quality assurance, 49
quality requirements, 15
rapid prototyping, 19, 35
reliability requirements, 15
resource requirements, 12
resources, 52
review, 51
review procedures, 50
RID, 18
risk, 9
risk analysis, 52

E-2 ESA PSS-05-03 Issue 1 Revision 1 (March 1995))
INDEX

risk management, 51
Rumbaugh, 26
safety requirements, 17
safety-critical system, 30
SCM44, 50
SCMP/AD, 3, 50
SCMP/SR, 40, 49
security requirements, 13
Shlaer-Mellor, 27
simulations, 13, 52
software requirements, 1, 9
SPM05, 49
SPM06, 49
SPM07, 49
SPMP/AD, 3, 49, 50
SPMP/SR, 49
SQA, 51
SQA06, 51
SQA07, 51
SQAP/AD, 3
SQAP/SR, 49
SR/R, 1, 17
SR01, 4, 49
SR02, 5
SR03, 5
SR04, 47
SR05, 47
SR06, 47
SR07, 47
SR08, 47
SR09, 17
SR10, 39
SR11, 39
SR12, 3, 39
SR13, 47
SR14, 40
SR15, 39
SR16, 39
SR17, 39
SR18, 41
SRD, 3, 39
stability, 50
state modelling, 27
Structured English, 20
SVV12, 50
SVV13, 50
SVV14, 52
SVVP/AD, 3
SVVP/SR, 49
SVVP/ST, 3, 52
System Test Plans, 17

TBC, 47
technical reviews, 5
test environment, 13
test equipment, 3
testing, 51
tests, 50
timing diagrams, 29
tools, 37, 40, 51
traceability, 37
training, 51
Transformation Schema, 21
URD, 4
user interface, 12
verification and validation, 49
verification requirements, 13
walkthroughs, 5

