BLOCKCHAIN TUTORIAL 0

Diffie-Hellman key exchange

Diffie-Hellman Key exchange

BLOCKCHAIN TUTORIAL 10

mobilefish.com

Diffie-Hellman key exchange

DIFFIE-HELLMAN KEY EXCHANGE

- Diffie-Hellman key exchange is a method to securely establish a shared secret between two parties (Alice and Bob) over a public channel.
 - p (modulus). For example $\alpha = 3$, p = 17
- 2. Alice generates a random number. This is Alice private key.
 - priv keyalice $\in \{2, ..., p-2\}$ example: priv keyalice = 15 Note: ϵ means element of
- 3. Bob also generates a random number. This is Bob private key. priv keybob $\in \{2, p-2\}$ example: priv keybob = 13

mobilefish.com

1. Alice and Bob agrees on the publicly shared domain parameters α (generator) and

DIFFIE-HELLMAN KEY EXCHANGE 4. Alice calculates her public key. pub keyalice = $\alpha^{\text{priv key alice}} \pmod{p} = 3^{15} \pmod{17}$ 5. Bob also calculates his public key. pub keybob = $\alpha^{\text{priv key bob}} \pmod{p} = 3^{13} \pmod{17}$ 6. Alice sends her public key to Bob over the public channel. 7. Bob sends his public key to Alice over the public channel.

mobilefish.com

DIFFIE-HELLMAN KEY EXCHANGE 8. Alice takes Bob public key and calculates the secret key: secret key = pub keybob priv key alice (mod p) = pub keybob $15 \pmod{17}$ 9. Bob takes Alice public key and calculates the secret key (same as Alice): secret key = pub keyalice priv key bob (mod p) = pub keyalice 13 (mod 17) 10. Alice and Bob can use the secret key (also known as session key) in a symmetric key algorithm for example AES to encrypt and decrypt their messages.

mobilefish.com

DIFFIE-HELLMAN KEY EXCHANGE

Proof that Alice and Bob secret keys are the same:

 $a = \alpha^{\text{priv key alice}}$

pub keyalice = $\alpha^{priv key alice} \pmod{p}$ pub keybob = $\alpha^{priv key bob} \pmod{p}$ Alice: secret key = pub keybob $^{priv key alice} \pmod{p} = \alpha^{ba} \pmod{p}$ Bob: secret key = pub keyalice $^{priv key bob} \pmod{p} = \alpha^{ab} \pmod{p} = \alpha^{ba} \pmod{p}$

mobilefish.com

 $b = \alpha^{\text{priv key bob}}$

DIFFIE-HELLMAN KEY EXCHANGE

Can Eve calculate the secret key?

• Eve has intercepted Alice and Bob public key and she knows **α** and p: pub keyalice = $\alpha^{\text{priv key alice}} \pmod{p}$ priv key_{alice} = \log_{α} pub key_{alice} (mod p) in another form:

pub keyalice = α priv keyalice (mod p)

mobilefish.com

She needs to calculate the discrete logarithm, which is very hard to do ($p \ge 1024$ bits):

