BLOCKCHAIN TUTORIAL 9

Discrete logarithm

$$
8=2 \times(\bmod 13)
$$

BLOCKCHAIN TUTORIAL 9

Discrete logarithm

DISCRETE LOGARITHM

- The goal of exponentials is to calculate the product: $x=2^{3}$
- The goal of logarithms is to calculate the exponent: $x=\log _{2}(8) \quad(8=2 \times)$
- In discrete logarithm, you need to apply a modulo operation in the latter:
- $x=\log _{2} 8(\bmod 13)$
- Other way of notation: $x=$ dog ${ }_{2,13}$ (8)
- where: $x=$ exponent, $2=$ base, $13=$ modulus, $8=$ remainder
- If you find this confusing, you can also rewrite it this way: $8=2 \times(\bmod \mid 3)$

DISCRETE LOGARITHM

- Example:
- $2 \times(\bmod 7)=4$
$\cdot x=2$ or $5 \quad x=\{1, ., 6\}$
- $4(\bmod 7)=4$ and $32 \bmod 7=4$
- There are two solutions. In the world of cryptography we are only interested in discrete logarithms where each exponent has a distinct remainder.
- If seems that if the modulus (p) is a prime number there are certain base values (b) which generate distinct remainders for different exponents $(x=1, \ldots, p-I)$. A prime number is a number that is divisible only by itself and I. For example: $2,3,5,7,11, \ldots$

DISCRETE LOGARITHM

- Lets calculate $\mathrm{b}^{\times}(\bmod 7)=$ remainder $x=\{1, \ldots, 6\} \quad \operatorname{modulus} p=7$

b	$\mathrm{b}^{\prime} \bmod 7$	$\mathrm{b}^{2} \bmod 7$	$b^{3} \bmod 7$	$\mathrm{b}^{4} \bmod 7$	$b^{5} \bmod 7$	$\mathrm{b}^{6} \bmod 7$
।	।	1	।	।	।	।
2	2	4	।	2	4	।
3	3	2	6	4	5	I
4	4	2	1	4	2	।
5	5	4	6	2	3	I
6	6	1	6	1	6	1

- The discrete logarithm for modulus 7 generates distinct remainders when using base value 3 or 5 and the remainders are in the range $\{1, \ldots, 6\}$

DISCRETE LOGARITHM

- The base values 3 and 5 are called the primitive roots of 7 or generators, often indicated by symbol α. It is called generator because applying the multiplication operation on one single element $\left(\boldsymbol{\alpha}^{\star}\right)$, generates all elements in the discrete group $\{1, \ldots p-\mid\}$
- The word discrete in discrete logarithm refer to the aspect that we are working in a discrete group $\{1, \ldots, p-I\}$ and not any real numbers (meaning fractions 2.58)
- Calculating 3 II mod $17=x$ is very easy, but doing the opposite, calculating the discrete logarithm $11=3 \times \bmod 17$ is very difficult. Especially if the modulus is at least 309 digits long. REMEMBER: CALCULATING A DISCRETE LOGARITHM IS HARD. To solve $I I=3 \times \bmod I 7$ a computer needs to try each exponent $x=0, I, 2,3 \ldots$ until the equation matches.

DISCRETE LOGARITHM

- Example: $\boldsymbol{\alpha}$ (generator) $=2$ and p (modulus) $=| |$ discrete group $\{|, \ldots, p-|\}$

od 11 = 2	26 mod	$211 \bmod \\|=2$	$2{ }^{16} \mathrm{mod} 11=$
$2^{2} \bmod 11=$	$2^{7} \bmod 11=7$	$212 \bmod 11=$	217 mod 11
$2^{3} \bmod 11=8$	$2^{8} \bmod 11=$	$2{ }^{13} \bmod 11=$	$2^{18} \mathrm{mod} 11$
$2^{4} \bmod 11=5$	$2^{9} \bmod 11=$	$214 \mathrm{mod} 11=$	219 mod
$2^{5} \bmod 11=10$	$2^{10} \bmod 11=$	$215 \mathrm{mod} 11=10$	220 m

- This is called a cyclic group of generator $\boldsymbol{\alpha}$. After a certain number of exponentiations and modulus operations, we have loop.
- If the remainder has value I, the cycle starts all over again in the same order.

DISCRETE LOGARITHM

- In the previous example $(p=| |)$ the cyclic group is referred to with notation: \mathbb{Z}_{p}^{*}
- For example: \mathbb{Z}^{*} ।।
- the * means no zero,
- the discrete group is $\{|, \ldots, P-|\}=\{|, \ldots| 0$,
- the number of elements in the discrete group is $p-1=10$
- Cyclic groups are the basis of discrete logarithm crypto systems.

