

v1.0.0

INTRO

- the Merkle tree.
- The Merkle tree is used in IOTA's Masked Authenticated Messaging.
- IOTA's Masked Authenticated Messaging will be explained in IOTA tutorial 19.

mobilefish.com

• The main objective of this video is to provide you with some basic knowledge about

The data (m) itself is not considered part of the Merkle tree but the HASHED data (M) is part of the Merkle tree.

hash tree.

mobilefish.com

• A hash tree or Merkle tree is a tree structure in which each leaf node is a hash of a block of data and each non-leaf node is a hash of its children. This results in a single hash called the Merkle root. If every node has two children, the tree is called a binary

• Why use a Merkle tree? one root hash value.

hash to check if message m_6 is not tampered with.

mobilefish.com

Why not hash all messages, append the hashed messages and then hash it all to get

• Bob get the root hash from a trusted source. If Alice wants to proof to Bob that m₆ is not tampered with, she needs to send message m₆ and all other hashed messages to Bob. Bob hashes message m₆, append all hashes to a single string and hash this string to get one root hash. Bob compares this new root hash with the trusted source root

- prove that message m_6 is not tampered with.
- A much better solution is using a Merkle tree.
- Bob to prove that message m_6 is not tampered with.

• In this example Alice has to provide 15 hashed values and the message m₆ to Bob to

 Again as before Bob gets the root hash from a trusted source. If Alice wants to proof that m₆ is not tampered with, she needs to send m₆ and 4 hashed values to Bob. With the received information Bob calculates the root hash value. Bob compares this root hash with the trusted source root hash to check if message m₆ is not tampered with.

• In this example Alice only needs to provide 4 hashed values and the message m₆ to

space is needed.

mobilefish.com

 Using a Merkle tree provides integrity and validity of your data using a small amount of data that a trusted authority has to maintain. This also means little memory / disk

- A perfect Merkle binary tree has the following properties: - The number of leaves is always 2^n (n=0, 1, 2, 3,..). - Each node has 0 or 2 children. - All leaves are on the same level.
- In a perfect binary tree the following formulas can be applied:

Total number of leaves = L = (N + 1) / 2Total number of nodes = N = 2L - 1Total number of levels = $LV = log_2(L) + 1$

- LV = (ln(L) / ln(2)) + 1

MERKLETREE: PERFECT BINARY TREE

Numberofleaves=L=2Numberofnodes=N=3Numberoflevels=LV=2

mobilefish.com

This Merkle tree has only one leaf. This leaf is also the root.

MERKLETREE: PERFECT BINARY TREE

MERKLETREE: PERFECT BINARY TREE

Number of levels = LV = 5

