
93

C H A P T E R 4
The class File Format

THIS chapter describes the Java virtual machine class file format. Each class

file contains the definition of a single class or interface. Although a class or interface
need not have an external representation literally contained in a file (for instance,
because the class is generated by a class loader), we will colloquially refer to any
valid representation of a class or interface as being in the class file format.

A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-bit
quantities are constructed by reading in two, four, and eight consecutive 8-bit
bytes, respectively. Multibyte data items are always stored in big-endian order,
where the high bytes come first. In the Java and Java 2 platforms, this format is
supported by interfaces java.io.DataInput and java.io.DataOutput and
classes such as java.io.DataInputStream and java.io.DataOutputStream.

This chapter defines its own set of data types representing class file data:
The types u1, u2, and u4 represent an unsigned one-, two-, or four-byte
quantity, respectively. In the Java and Java 2 platforms, these types may be
read by methods such as readUnsignedByte, readUnsignedShort, and
readInt of the interface java.io.DataInput.

This chapter presents the class file format using pseudostructures written in a C-
like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the class file format are
referred to as items. Successive items are stored in the class file sequentially,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in several class
file structures. Although we use C-like array syntax to refer to table items, the fact
that tables are streams of varying-sized structures means that it is not possible to
translate a table index directly to a byte offset into the table.

THE CLASS FILE FORMAT94

Where we refer to a data structure as an array, it consists of zero or more
contiguous fixed-sized items and can be indexed like an array.

4.1 Notation and Terminology

We use this font for Prolog code and code fragments.

We use this font for Java virtual machine instructions and for class file
structures.

Commentary, designed to clarify the specification, is given as indented text
between horizontal lines:

Commentary provides intuition, motivation, rationale, examples etc.

4.2 The ClassFile Structure

A class file consists of a single ClassFile structure:

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

THE ClassFile STRUCTURE 95

The items in the ClassFile structure are as follows:

magic

The magic item supplies the magic number identifying the class
file format; it has the value 0xCAFEBABE.

minor_version, major_version

The values of the minor_version and major_version items are
the minor and major version numbers of this class file.Together,
a major and a minor version number determine the version of the
class file format. If a class file has major version number M

and minor version number m, we denote the version of its class
file format as M.m. Thus, class file format versions may be
ordered lexicographically, for example, 1.5 < 2.0 < 2.1.

A Java virtual machine implementation can support a class
file format of version v if and only if v lies in some contiguous
range Mi.0 ≤ v ≤ Mj.m. Only Sun can specify what range of
versions a Java virtual machine implementation conforming to a
certain release level of the Java platform may support.1

constant_pool_count

The value of the constant_pool_count item is equal to the
number of entries in the constant_pool table plus one. A
constant_pool index is considered valid if it is greater than zero
and less than constant_pool_count, with the exception for
constants of type long and double noted in §4.5.5.

constant_pool[]

The constant_pool is a table of structures (§4.5) representing
various string constants, class and interface names, field names,
and other constants that are referred to within the ClassFile

1 The Java virtual machine implementation of Sun’s JDK release 1.0.2 supports
class file format versions 45.0 through 45.3 inclusive. Sun’s JDK releases
1.1.X can support class file formats of versions in the range 45.0 through
45.65535 inclusive. For implementations of version 1.k of the Java 2
platform can support class file formats of versions in the range 45.0 through
44+k.0 inclusive.

k 2≥

THE CLASS FILE FORMAT96

structure and its substructures. The format of each constant_pool

table entry is indicated by its first “tag” byte.
The constant_pool table is indexed from 1 to

constant_pool_count−1.

access_flags

The value of the access_flags item is a mask of flags used to
denote access permissions to and properties of this class or
interface. The interpretation of each flag, when set, is as shown in
Table 4.1.

THE ClassFile STRUCTURE 97

A class may be marked with the ACC_SYNTHETIC flag to
indicate that it was generated by the compiler and does not appear
in the source code.

The ACC_ENUM bit indicates that this class or its superclass
is declared as an enumerated type.

An interface is distinguished by its ACC_INTERFACE flag
being set. If its ACC_INTERFACE flag is not set, this class file
defines a class, not an interface.

If the ACC_INTERFACE flag of this class file is set, its
ACC_ABSTRACT flag must also be set (§2.13.1). Such a class file
must not have its ACC_FINAL, ACC_SUPER or ACC_ENUM flags
set.

An annotation type must have its ACC_ANNOTATION flag
set. If the ACC_ANNOTATION flag is set, the
ACC_INTERFACE flag must be set as well.

If the ACC_INTERFACE flag of this class file is not set, it may
have any of the other flags in Table 4.1 set, except the

Table 4.1 Class access and property modifiers

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed
from outside its package.

ACC_FINAL 0x0010 Declared final; no subclasses
allowed.

ACC_SUPER 0x0020 Treat superclass methods specially
when invoked by the invokespecial
instruction.

ACC_INTERFACE 0x0200 Is an interface, not a class.

ACC_ABSTRACT 0x0400 Declared abstract; must not be
instantiated.

ACC_SYNTHETIC 0x1000 Declared synthetic; Not present in
the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

THE CLASS FILE FORMAT98

ACC_ANNOTATION flag. However, such a class file cannot
have both its ACC_FINAL and ACC_ABSTRACT flags set (§2.8.2).

The setting of the ACC_SUPER flag indicates which of two
alternative semantics for its invokespecial instruction the Java
virtual machine is to express; the ACC_SUPER flag exists for
backward compatibility for code compiled by Sun’s older
compilers for the Java programming language. All new
implementations of the Java virtual machine should implement
the semantics for invokespecial documented in this specification.
All new compilers to the instruction set of the Java virtual
machine should set the ACC_SUPER flag. Sun’s older compilers
generated ClassFile flags with ACC_SUPER unset. Sun’s older
Java virtual machine implementations ignore the flag if it is set.

All bits of the access_flags item not assigned in Table 4.1
are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

this_class

The value of the this_class item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Class_info (§4.5.1) structure representing
the class or interface defined by this class file.

super_class

For a class, the value of the super_class item either must be
zero or must be a valid index into the constant_pool table. If the
value of the super_class item is nonzero, the constant_pool
entry at that index must be a CONSTANT_Class_info (§4.5.1)
structure representing the direct superclass of the class defined by
this class file. Neither the direct superclass nor any of its
superclasses may be a final class.

If the value of the super_class item is zero, then this class
file must represent the class Object, the only class or interface
without a direct superclass.

For an interface, the value of the super_class item must
always be a valid index into the constant_pool table. The
constant_pool entry at that index must be a
CONSTANT_Class_info structure representing the class Object.

THE ClassFile STRUCTURE 99

interfaces_count

The value of the interfaces_count item gives the number of
direct superinterfaces of this class or interface type.

interfaces[]

Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry at each
value of interfaces[i], where 0 ≤ i < interfaces_count,
must be a CONSTANT_Class_info (§4.5.1) structure representing
an interface that is a direct superinterface of this class or interface
type, in the left-to-right order given in the source for the type.

fields_count

The value of the fields_count item gives the number of
field_info structures in the fields table. The field_info
(§4.6) structures represent all fields, both class variables and
instance variables, declared by this class or interface type.

fields[]

Each value in the fields table must be a field_info (§4.6)
structure giving a complete description of a field in this class or
interface. The fields table includes only those fields that are
declared by this class or interface. It does not include items
representing fields that are inherited from superclasses or
superinterfaces.

methods_count

The value of the methods_count item gives the number of
method_info structures in the methods table.

methods[]

Each value in the methods table must be a method_info (§4.7)
structure giving a complete description of a method in this class
or interface. If the method is not native or abstract, the Java
virtual machine instructions implementing the method are also
supplied.

The method_info structures represent all methods declared
by this class or interface type, including instance methods, class
(static) methods, instance initialization methods (§3.9), and
any class or interface initialization method (§3.9). The methods

THE CLASS FILE FORMAT100

table does not include items representing methods that are
inherited from superclasses or superinterfaces.

attributes_count

The value of the attributes_count item gives the number of
attributes (§4.8) in the attributes table of this class.

attributes[]

Each value of the attributes table must be an
attribute_info structure (§4.8).

The only attributes defined by this specification as appearing
in the attributes table of a ClassFile structure are the
InnerClasses (§4.8.6), EnclosingMethod (§4.8.7), Synthetic
(§4.8.8), SourceFile (§4.8.10), Signature, and Deprecated

(§4.8.15) attributes.
A Java virtual machine implementation is required to silently

ignore any or all attributes in the attributes table of a
ClassFile structure that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of the class file, but only to provide additional
descriptive information (§4.8.1).

4.3 The Internal Form of Names

4.3.1 Fully Qualified Class and Interface Names

Class and interface names that appear in class file structures are always repre-
sented in a fully qualified form (§2.7.5). Such names are always represented as
CONSTANT_Utf8_info (§4.5.7) structures and thus may be drawn, where not fur-
ther constrained, from the entire Unicode character set. Class names and inter-
faces are referenced both from those CONSTANT_NameAndType_info (§4.5.6)
structures that have such names as part of their descriptor (§4.4) and from all
CONSTANT_Class_info (§4.5.1) structures.

For historical reasons the syntax of fully qualified class and interface names that
appear in class file structures differs from the familiar syntax of fully qualified
names documented in §2.7.5. In this internal form, the ASCII periods ('.') that
normally separate the identifiers that make up the fully qualified name are
replaced by ASCII forward slashes ('/'). The identifiers themselves must be
unqualified names as discussed in section (§4.3.2) below. For example, the normal

DESCRIPTORS AND SIGNATURES 101

fully qualified name of class Thread is java.lang.Thread. In the form used in
descriptors in the class file format, a reference to the name of class Thread is
implemented using a CONSTANT_Utf8_info structure representing the string
"java/lang/Thread".

4.3.2 Unqualified Names

Names of methods, fields and local variables are stored as unqualified names.
Unqualified names must not contain the characters '.', ';', '[' or '/'. Method
names are further constrained so that, with the exception of the special method
names (§3.9) <init> and <clinit>, they must not contain the characters '<' or
'>'.

4.4 Descriptors and Signatures

A descriptor is a string representing the type of a field or method. Descriptors are
represented in the class file format using modified UTF-8 strings (§4.5.7) and thus
may be drawn, where not further constrained, from the entire Unicode character set.

A signature is a string representing the generic type of a field or method, or
generic type information for a class declaration.

4.4.1 Grammar Notation

Descriptors and signatures are specified using a grammar. This grammar is a set of
productions that describe how sequences of characters can form syntactically cor-
rect descriptors of various types. Terminal symbols of the grammar are shown in
bold fixed-width font. Nonterminal symbols are shown in italic type. The defini-
tion of a nonterminal is introduced by the name of the nonterminal being defined,
followed by a colon. One or more alternative right-hand sides for the nonterminal
then follow on succeeding lines. For example, the production:

FieldType:

BaseType

ObjectType

ArrayType

THE CLASS FILE FORMAT102

states that a FieldType may represent either a BaseType, an ObjectType, or an Array-
Type.

A nonterminal symbol on the right-hand side of a production that is followed by
an asterisk (*) represents zero or more possibly different values produced from
that nonterminal, appended without any intervening space. Similarly, a
nonterminal symbol on the right-hand side of a production that is followed by an
plus sign (+) represents one or more possibly different values produced from that
nonterminal, appended without any intervening space. The production:

MethodDescriptor:

(ParameterDescriptor*) ReturnDescriptor
states that a MethodDescriptor represents a left parenthesis, followed by zero or
more ParameterDescriptor values, followed by a right parenthesis, followed by a
ReturnDescriptor.

4.4.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable. It is a
series of characters generated by the grammar:

FieldDescriptor:

FieldType

ComponentType:

FieldType

FieldType:

BaseType

ObjectType

ArrayType

BaseType:

B

C

D

F

I

DESCRIPTORS AND SIGNATURES 103

J

S

Z

ObjectType:

L Classname;

ArrayType:

[ComponentType
The characters of BaseType, the L and ; of ObjectType, and the [of ArrayType are all

ASCII characters. The Classname represents a fully qualified class or interface name. For

historical reasons it is encoded in internal form (§4.2). A type descriptor reprenting an
array type is valid only if it represents a type with 255 or fewer dimensions.

The interpretation of the field types is as shown in Table 4.2.

For example, the descriptor of an instance variable of type int is simply I. The
descriptor of an instance variable of type Object is Ljava/lang/Object;. Note
that the internal form of the fully qualified name for class Object is used. The
descriptor of an instance variable that is a multidimensional double array,

Table 4.2 Interpretation of BaseType characters

BaseType Character Type Interpretation

B byte signed byte

C char Unicode character

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

J long long integer

L Classname; reference an instance of class <classname>

S short signed short

Z boolean true or false

[reference one array dimension

THE CLASS FILE FORMAT104

double d[][][];

is

[[[D

4.4.3 Method Descriptors

A method descriptor represents the parameters that the method takes and the value
that it returns:

MethodDescriptor:

(ParameterDescriptor*) ReturnDescriptor

A parameter descriptor represents a parameter passed to a method:

ParameterDescriptor:

FieldType

A return descriptor represents the type of the value returned from a method. It is a
series of characters generated by the grammar:

ReturnDescriptor:

FieldType

VoidDescriptor

VoidDescriptor:

V

The character V indicates that the method returns no value (its return type is
void).

A method descriptor is valid only if it represents method parameters with a total
length of 255 or less, where that length includes the contribution for this in the
case of instance or interface method invocations. The total length is calculated by
summing the contributions of the individual parameters, where a parameter of
type long or double contributes two units to the length and a parameter of any
other type contributes one unit.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)

is

DESCRIPTORS AND SIGNATURES 105

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified names of Thread and Object are
used in the method descriptor.

The method descriptor for mymethod is the same whether mymethod is a class or
an instance method. Although an instance method is passed this, a reference to
the current class instance, in addition to its intended parameters, that fact is not
reflected in the method descriptor. (A reference to this is not passed to a class
method.) The reference to this is passed implicitly by the method invocation
instructions of the Java virtual machine used to invoke instance methods.

4.4.4 Signatures

Signatures are used to encode Java programming language type information that is
not part of the Java virtual machine type system, such as generic type and method
declarations and parameterized types. See The Java Language Specification, Third
Edition, for details about such types.

This kind of type information is needed to support reflection and
debugging, and by the Java compiler.

In the following, the terminal symbol Identifier is used to denote an identifier
for a type, field, local variable, parameter, method name or type variable, as
generated by the Java compiler. Such an identifier may contain characters that
must not appear in a legal identifier in the Java programming language.

ClassSignature:

FormalTypeParametersopt SuperclassSignature SuperinterfaceSignature*

A class signature, defined by the production ClassSignature above, is used to
encode type information about a class declaration. It describes any formal type
parameters the class might have, and lists its (possibly parameterized) direct
superclass and direct superinterfaces, if any.

FormalTypeParameters:

<FormalTypeParameter+>

THE CLASS FILE FORMAT106

FormalTypeParameter:

Identifier ClassBound InterfaceBound*

A formal type parameter is described by its name, followed by its class and
interface bounds. If the class bound does not specify a type, it is taken to be
Object.

ClassBound:

 : FieldTypeSignatureopt

InterfaceBound:

 : FieldTypeSignature

SuperclassSignature:

ClassTypeSignature

SuperinterfaceSignature:

ClassTypeSignature

FieldTypeSignature:

ClassTypeSignature

ArrayTypeSignature

TypeVariableSignature

A field type signature, defined by the production FieldTypeSignature above,
encodes the (possibly parameterized) type for a field, parameter or local variable.

ClassTypeSignature:

L PackageSpecifier* SimpleClassTypeSignature
ClassTypeSignatureSuffix* ;

PackageSpecifier:

DESCRIPTORS AND SIGNATURES 107

Identifier / PackageSpecifier*

SimpleClassTypeSignature:

Identifier TypeArgumentsopt

ClassTypeSignatureSuffix:

 . SimpleClassTypeSignature

TypeVariableSignature:

T Identifier ;

TypeArguments:

<TypeArgument+>

TypeArgument:

WildcardIndicatoropt FieldTypeSignature

*

WildcardIndicator:

+

-

ArrayTypeSignature:

[TypeSignature

TypeSignature:

FieldTypeSignature

BaseType

A class type signature gives complete type information for a class or interface
type. The class type signature must be formulated such that it can be reliably

THE CLASS FILE FORMAT108

mapped to the binary name of the class it denotes by erasing any type arguments
and converting ‘.’ characters in the signature to ‘$’ characters.

MethodTypeSignature:

FormalTypeParametersopt (TypeSignature*) ReturnType
ThrowsSignature*

ReturnType:

TypeSignature

VoidDescriptor

ThrowsSignature:

^ClassTypeSignature

^TypeVariableSignature

A method signature, defined by the production MethodTypeSignature above,
encodes the (possibly parameterized) types of the method’s formal arguments and
of the exceptions it has declared in its throws clause, its (possibly parameterized)
return type, and any formal type parameters in the method declaration.

A Java compiler must output generic signature information for any class,
interface, consructor or member whose generic signature would include
references to type variables or parameterized types. If the throws clause of a
method or constructor does not involve type variables, the ThowsSignature may
be elided from the MethodTypeSignature.

The Java virtual machine does not check the well formedness of the signatures
described in this subsection during loading or linking. Instead, these checks are
deferred until the signatures are used by reflective methods, as specified in the
API of Class and members of java.lang.reflect. Future versions of the Java
virtual machine may be required to performs some or all of these checks during
loading or linking.

4.5 The Constant Pool

Java virtual machine instructions do not rely on the runtime layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic infor-
mation in the constant_pool table.

THE CONSTANT POOL 109

All constant_pool table entries have the following general format:

cp_info {

u1 tag;

u1 info[];

}

Each item in the constant_pool table must begin with a 1-byte tag indicating the
kind of cp_info entry. The contents of the info array vary with the value of tag.
The valid tags and their values are listed in Table 4.3. Each tag byte must be fol-
lowed by two or more bytes giving information about the specific constant. The for-
mat of the additional information varies with the tag value.

4.5.1 The CONSTANT_Class_info Structure

The CONSTANT_Class_info structure is used to represent a class or an interface:

CONSTANT_Class_info {

u1 tag;

u2 name_index;

}

The items of the CONSTANT_Class_info structure are the following:

Table 4.3 Constant pool tags

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_String 8

CONSTANT_Integer 3

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

THE CLASS FILE FORMAT110

tag

The tag item has the value CONSTANT_Class (7).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (§4.5.7) structure representing a
valid fully qualified class or interface name encoded in internal
form (§4.3.1).

Because arrays are objects, the opcodes anewarray and multianewarray can
reference array “classes” via CONSTANT_Class_info (§4.5.1) structures in the
constant_pool table. For such array classes, the name of the class is the
descriptor of the array type. For example, the class name representing a two-
dimensional int array type

int[][]

is

[[I

The class name representing the type array of class Thread

Thread[]

is

[Ljava/lang/Thread;

An array type descriptor is valid only if it represents 255 or fewer dimensions.

4.5.2 The CONSTANT_Fieldref_info, CONSTANT_Methodref_info,
and CONSTANT_InterfaceMethodref_info Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fieldref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

THE CONSTANT POOL 111

CONSTANT_Methodref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

CONSTANT_InterfaceMethodref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

The items of these structures are as follows:

tag

The tag item of a CONSTANT_Fieldref_info structure has the
value CONSTANT_Fieldref (9).

The tag item of a CONSTANT_Methodref_info structure has
the value CONSTANT_Methodref (10).

The tag item of a CONSTANT_InterfaceMethodref_info
structure has the value CONSTANT_InterfaceMethodref (11).

class_index

The value of the class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Class_info (§4.5.1) structure representing
a class or interface type that has the field or method as a member.

The class_index item of a CONSTANT_Methodref_info
structure must be a class type, not an interface type. The
class_index item of a CONSTANT_InterfaceMethodref_info
structure must be an interface type. The class_index item of a
CONSTANT_Fieldref_info structure may be either a class type
or an interface type.

name_and_type_index

The value of the name_and_type_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_NameAndType_info (§4.5.6)
structure. This constant_pool entry indicates the name and
descriptor of the field or method. In a CONSTANT_Fieldref_info
the indicated descriptor must be a field descriptor (§4.4.2).

THE CLASS FILE FORMAT112

Otherwise, the indicated descriptor must be a method descriptor
(§4.4.3).

If the name of the method of a CONSTANT_Methodref_info
structure begins with a '<' ('\u003c'), then the name must be
the special name <init>, representing an instance initialization
method (§3.9). The return type of such a method must be void.

4.5.3 The CONSTANT_String_info Structure

The CONSTANT_String_info structure is used to represent constant objects of the
type String:

CONSTANT_String_info {

u1 tag;

u2 string_index;

}

The items of the CONSTANT_String_info structure are as follows:

tag

The tag item of the CONSTANT_String_info structure has the
value CONSTANT_String (8).

string_index

The value of the string_index item must be a valid index into
the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the sequence of characters to which the String
object is to be initialized.

4.5.4 The CONSTANT_Integer_info and CONSTANT_Float_info Structures

The CONSTANT_Integer_info and CONSTANT_Float_info structures represent
4-byte numeric (int and float) constants:

CONSTANT_Integer_info {

u1 tag;

u4 bytes;

}

THE CONSTANT POOL 113

CONSTANT_Float_info {

u1 tag;

u4 bytes;

}

The items of these structures are as follows:

tag

The tag item of the CONSTANT_Integer_info structure has the
value CONSTANT_Integer (3).

The tag item of the CONSTANT_Float_info structure has the
value CONSTANT_Float (4).

bytes

The bytes item of the CONSTANT_Integer_info structure
represents the value of the int constant. The bytes of the value
are stored in big-endian (high byte first) order.

The bytes item of the CONSTANT_Float_info structure
represents the value of the float constant in IEEE 754 floating-
point single format (§3.3.2). The bytes of the single format
representation are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_Float_info
structure is determined as follows. The bytes of the value are first
converted into an int constant bits. Then:

• If bits is 0x7f800000, the float value will be positive infinity.

• If bits is 0xff800000, the float value will be negative infinity.

• If bits is in the range 0x7f800001 through 0x7fffffff or in the
range 0xff800001 through 0xffffffff, the float value will
be NaN.

• In all other cases, let s, e, and m be three values that might be
computed from bits:

THE CLASS FILE FORMAT114

int s = ((bits >> 31) == 0) ? 1 : -1;

int e = ((bits >> 23) & 0xff);

int m = (e == 0) ?

(bits & 0x7fffff) << 1 :

(bits & 0x7fffff) | 0x800000;

Then the float value equals the result of the mathematical
expression .

4.5.5 The CONSTANT_Long_info and CONSTANT_Double_info Structures

The CONSTANT_Long_info and CONSTANT_Double_info represent 8-byte
numeric (long and double) constants:

CONSTANT_Long_info {

u1 tag;

u4 high_bytes;

u4 low_bytes;

}

CONSTANT_Double_info {

u1 tag;

u4 high_bytes;

u4 low_bytes;

}

All 8-byte constants take up two entries in the constant_pool table of the class
file. If a CONSTANT_Long_info or CONSTANT_Double_info structure is the item
in the constant_pool table at index n, then the next usable item in the pool is
located at index n+2. The constant_pool index n+1 must be valid but is
considered unusable.2

The items of these structures are as follows:

2 In retrospect, making 8-byte constants take two constant pool entries was a
poor choice.

s m 2e 150–⋅ ⋅

THE CONSTANT POOL 115

tag

The tag item of the CONSTANT_Long_info structure has the
value CONSTANT_Long (5).

The tag item of the CONSTANT_Double_info structure has
the value CONSTANT_Double (6).

high_bytes, low_bytes

The unsigned high_bytes and low_bytes items of the
CONSTANT_Long_info structure together represent the value of
the long constant ((long) high_bytes << 32) + low_bytes,
where the bytes of each of high_bytes and low_bytes are
stored in big-endian (high byte first) order.

The high_bytes and low_bytes items of the
CONSTANT_Double_info structure together represent the double
value in IEEE 754 floating-point double format (§3.3.2). The
bytes of each item are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_Double_info
structure is determined as follows. The high_bytes and
low_bytes items are first converted into the long constant bits,
which is equal to ((long) high_bytes << 32) + low_bytes.
Then:

• If bits is 0x7ff0000000000000L, the double value will be
positive infinity.

• If bits is 0xfff0000000000000L, the double value will be
negative infinity.

• If bits is in the range 0x7ff0000000000001L through
0x7fffffffffffffffL or in the range 0xfff0000000000001L
through 0xffffffffffffffffL, the double value will be NaN.

• In all other cases, let s, e, and m be three values that might be
computed from bits:

int s = ((bits >> 63) == 0) ? 1 : -1;

int e = (int)((bits >> 52) & 0x7ffL);

long m = (e == 0) ?

(bits & 0xfffffffffffffL) << 1 :

(bits & 0xfffffffffffffL) | 0x10000000000000L;

THE CLASS FILE FORMAT116

Then the floating-point value equals the double value of the
mathematical expression .

4.5.6 The CONSTANT_NameAndType_info Structure

The CONSTANT_NameAndType_info structure is used to represent a field or
method, without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {

u1 tag;

u2 name_index;

u2 descriptor_index;

}

The items of the CONSTANT_NameAndType_info structure are as follows:

tag

The tag item of the CONSTANT_NameAndType_info structure has
the value CONSTANT_NameAndType (12).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (§4.5.7) structure representing
either the special method name <init> (§3.9) or a valid
unqualified name (§4.3.2) denoting a field or method. .

descriptor_index

The value of the descriptor_index item must be a valid index
into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing a valid field descriptor (§4.4.2) or method descriptor
(§4.4.3).

4.5.7 The CONSTANT_Utf8_info Structure

The CONSTANT_Utf8_info structure is used to represent constant string val-
ues.String content is encoded in modified UTF-8.

Modified UTF-8 strings are encoded so that character sequences that
contain only non-null ASCII characters can be represented using only 1
byte per character, but all Unicode characters can be represented. All

s m 2e 1075–⋅ ⋅

THE CONSTANT POOL 117

characters in the range '\u0001' to '\u007F' are represented by a single
byte:

The 7 bits of data in the byte give the value of the character represented. The null
character ('\u0000') and characters in the range '\u0080' to '\u07FF' are repre-
sented by a pair of bytes x and y:

The bytes represent the character with the value ((x & 0x1f) << 6) + (y & 0x3f).

Characters in the range '\u0800' to '\uFFFF' are represented by 3 bytes x, y,
and z:

The character with the value ((x & 0xf) << 12) + ((y & 0x3f) << 6) + (z & 0x3f) is
represented by the bytes.

Characters with code points above U+FFFF (so-called supplementary characters)
are represented by separately encoding the two surrogate code units of their UTF-
16 representation. Each of the surrogate code units is represented by three bytes.
This means, supplementary characters are represented by six bytes, u, v, w, x, y,
and z:

The character with the value
0x10000+((v&0x0f)<<16)+((w&0x3f)<<10)+(y&0x0f)<<6)+(z&0x3f) is
represented by the six bytes.

The bytes of multibyte characters are stored in the class file in big-endian (high
byte first) order.

There are two differences between this format and the “standard” UTF-8 format.
First, the null character (char)0 is encoded using the 2-byte format rather than
the 1-byte format, so that modified UTF-8 strings never have embedded nulls.
Second, only the 1-byte, 2-byte, and 3-byte formats of standard UTF-8 are used.

0 bits 6-0

x: 1 1 0 bits 10-6 y: 1 0 bits 5-0

x: 1 1 1 0 bits 15-12 y: 1 0 bits 11-6 z: 1 0 bits 5-0

u: 1 1 1 0 1 1 0 1 v: 1 0 1 0 (bits 20-16)-1 w: 1 0 bits 15-10

x: 1 1 1 0 1 1 0 1 y: 1 0 1 1 bits 9-6 z: 1 0 bits 5-0

THE CLASS FILE FORMAT118

The Java VM does not recognize the four-byte format of standard UTF-8; it uses
its own two-times-three-byte format instead.

For more information regarding the standard UTF-8 format, see section 3.9
Unicode Encoding Forms of The Unicode Standard, Version 4.0.

The CONSTANT_Utf8_info structure is

CONSTANT_Utf8_info {

u1 tag;

u2 length;

u1 bytes[length];

}

The items of the CONSTANT_Utf8_info structure are the following:

tag

The tag item of the CONSTANT_Utf8_info structure has the
value CONSTANT_Utf8 (1).

length

The value of the length item gives the number of bytes in the
bytes array (not the length of the resulting string). The strings in
the CONSTANT_Utf8_info structure are not null-terminated.

bytes[]

The bytes array contains the bytes of the string. No byte may
have the value (byte)0 or lie in the range (byte)0xf0-
(byte)0xff.

4.6 Fields

Each field is described by a field_info structure. No two fields in one class file
may have the same name and descriptor (§4.4.2). The format of this structure is

field_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

FIELDS 119

}

The items of the field_info structure are as follows:

access_flags

The value of the access_flags item is a mask of flags used to
denote access permission to and properties of this field. The
interpretation of each flag, when set, is as shown in Table 4.4.

THE CLASS FILE FORMAT120

The ACC_ENUM bit is indicates that this field is being used
to hold an element of an enumerated type.

A field may be marked with the ACC_SYNTHETIC flag to
indicate that it was generated by the compiler and does not appear
in the source code.

Fields of classes may set any of the flags in Table 4.4.
However, a specific field of a class may have at most one of its
ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set
(§2.7.4) and must not have both its ACC_FINAL and
ACC_VOLATILE flags set (§2.9.1).

All fields of interfaces must have their ACC_PUBLIC,
ACC_STATIC, and ACC_FINAL flags set; they may have their
ACC_SYNTHETIC flag set and must not have any of the other flags
in Table 4.4 set (§2.13.3.1).

All bits of the access_flags item not assigned in Table 4.4
are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

Table 4.4 Field access and property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from
outside its package.

ACC_PRIVATE 0x0002 Declared private; usable only within
the defining class.

ACC_PROTECTED 0x0004 Declared protected; may be accessed
within subclasses.

ACC_STATIC 0x0008 Declared static.

ACC_FINAL 0x0010 Declared final; no further assignment
after initialization.

ACC_VOLATILE 0x0040 Declared volatile; cannot be cached.

ACC_TRANSIENT 0x0080 Declared transient; not written or read
by a persistent object manager.

ACC_SYNTHETIC 0x1000 Declared synthetic; Not present in the
source code.

ACC_ENUM 0x4000 Declared as an element of an enum.

FIELDS 121

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (§4.5.7) structure which must
represent a valid unqualified name (§4.3.2) denoting a field.

descriptor_index

The value of the descriptor_index item must be a valid index
into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure that
must represent a valid field descriptor (§4.4.2).

attributes_count

The value of the attributes_count item indicates the number
of additional attributes (§4.8) of this field.

attributes[]

Each value of the attributes table must be an attribute structure
(§4.8). A field can have any number of attributes associated with it.

The attributes defined by this specification as appearing in the
attributes table of a field_info structure are the ConstantValue
(§4.8.2), Synthetic (§4.8.8), Signature (§4.8.9) and Deprecated

(§4.8.15) attributes.
A Java virtual machine implementation must recognize and

correctly read ConstantValue (§4.8.2) attributes found in the
attributes table of a field_info structure. If a Java virtual
machine recognizes class files whose major version is 49.0 or above, it
must recognize and correctly read Signature (§4.8.9) attributes
found in the attributes table of a field_info structure. A
Java virtual machine implementation is required to silently ignore
any or all other attributes in the attributes table that it does not
recognize. Attributes not defined in this specification are not
allowed to affect the semantics of the class file, but only to
provide additional descriptive information (§4.8.1).

THE CLASS FILE FORMAT122

4.7 Methods

Each method, including each instance initialization method (§3.9) and the class or
interface initialization method (§3.9), is described by a method_info structure. No
two methods in one class file may have the same name and descriptor (§4.4.3).

The structure has the following format:

method_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of the method_info structure are as follows:

METHODS 123

access_flags

The value of the access_flags item is a mask of flags used to
denote access permission to and properties of this method. The
interpretation of each flag, when set, is as shown in Table 4.5.

The ACC_VARARGS flag indicates that this method takes a
variable number of arguments at the source code level. A method
declared to take a variable number of arguments must be
compiled with the ACC_VARARGS flag set to 1. All other
methods must be compiled with the ACC_VARARGS flag set to

Table 4.5 Method access and property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed
from outside its package.

ACC_PRIVATE 0x0002 Declared private; accessible only
within the defining class.

ACC_PROTECTED 0x0004 Declared protected; may be
accessed within subclasses.

ACC_STATIC 0x0008 Declared static.

ACC_FINAL 0x0010 Declared final; must not be over-
ridden.

ACC_SYNCHRONIZED 0x0020 Declared synchronized; invocation
is wrapped in a monitor lock.

ACC_BRIDGE 0x0040 A bridge method, generated by the
compiler.

ACC_VARARGS 0x0080 Declared with variable number of
arguments.

ACC_NATIVE 0x0100 Declared native; implemented in a
language other than Java.

ACC_ABSTRACT 0x0400 Declared abstract; no implementa-
tion is provided.

ACC_STRICT 0x0800 Declared strictfp; floating-point
mode is FP-strict

ACC_SYNTHETIC 0x1000 Declared synthetic; Not present in
the source code.

THE CLASS FILE FORMAT124

0. The ACC_BRIDGE method is used to indicate a bridge method
generated by the compiler.

A method may be marked with the ACC_SYNTHETIC flag
to indicate that it was generated by the compiler and does not
appear in the source code.

Methods of classes may set any of the flags in Table 4.5.
However, a specific method of a class may have at most one of its
ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC flags set
(§2.7.4). If such a method has its ACC_ABSTRACT flag set it must
not have any of its ACC_FINAL, ACC_NATIVE, ACC_PRIVATE,
ACC_STATIC, ACC_STRICT, or ACC_SYNCHRONIZED flags set
(§2.13.3.2).

All interface methods must have their ACC_ABSTRACT and
ACC_PUBLIC flags set; they may have their ACC_VARARGS,
ACC_BRIDGE and ACC_SYNTHETIC flags set and must not have
any of the other flags in Table 4.5 set (§2.13.3.2).

A specific instance initialization method (§3.9) may have at
most one of its ACC_PRIVATE, ACC_PROTECTED, and ACC_PUBLIC

flags set and may also have its ACC_STRICT, ACC_VARARGS, and
ACC_SYNTHETIC flags set, but must not have any of the other flags
in Table 4.5 set.

Class and interface initialization methods (§3.9) are called
implicitly by the Java virtual machine; the value of their
access_flags item is ignored except for the settings of the
ACC_STRICT flag.

All bits of the access_flags item not assigned in Table 4.5
are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java virtual
machine implementations.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (§4.5.7) structure representing
either one of the special method names (§3.9), <init> or
<clinit>, or a valid unqualified name (§4.3.2) denoting a
method.

ATTRIBUTES 125

descriptor_index

The value of the descriptor_index item must be a valid index
into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing a valid method descriptor (§4.4.3).

attributes_count

The value of the attributes_count item indicates the number
of additional attributes (§4.8) of this method.

attributes[]

Each value of the attributes table must be an attribute structure
(§4.8). A method can have any number of optional attributes
associated with it.

The only attributes defined by this specification as appearing
in the attributes table of a method_info structure are the
Code (§4.8.3), Exceptions (§4.8.5), Synthetic (§4.8.8),
Signature (§4.8.9) and Deprecated (§4.8.15) attributes.

A Java virtual machine implementation must recognize and
correctly read Code (§4.8.3) and Exceptions (§4.8.5) attributes
found in the attributes table of a method_info structure. If a
Java virtual machine recognizes class files whose major version is
49.0 or above, it must recognize and correctly read Signature

(§4.8.9) attributes found in the attributes table of a
method_info structure. A Java virtual machine implementation
is required to silently ignore any or all other attributes in the
attributes table of a method_info structure that it does not
recognize. Attributes not defined in this specification are not
allowed to affect the semantics of the class file, but only to
provide additional descriptive information (§4.8.1).

4.8 Attributes

Attributes are used in the ClassFile (§4.2), field_info (§4.6), method_info
(§4.7), Code_attribute (§4.8.3) structures of the class file format. All attributes
have the following general format:

THE CLASS FILE FORMAT126

attribute_info {

u2 attribute_name_index;

u4 attribute_length;

u1 info[attribute_length];

}

For all attributes, the attribute_name_index must be a valid unsigned 16-bit
index into the constant pool of the class. The constant_pool entry at
attribute_name_index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the name of the attribute. The value of the attribute_length item
indicates the length of the subsequent information in bytes. The length does not
include the initial six bytes that contain the attribute_name_index and
attribute_length items.

Certain attributes are predefined as part of the class file specification. The
predefined attributes are the SourceFile (§4.8.10), ConstantValue (§4.8.2),
Code (§4.8.3), StackMapTable (§4.8.4), Exceptions (§4.8.5), InnerClasses
(§4.8.6), EnclosingMethod (§4.8.7), Synthetic (§4.8.8), Signature (§4.8.9),
LineNumberTable (§4.8.12), LocalVariableTable and Deprecated (§4.8.15)
attributes. Within the context of their use in this specification, that is, in the
attributes tables of the class file structures in which they appear, the names of
these predefined attributes are reserved.

Of the predefined attributes, the Code, ConstantValue and Exceptions
attributes must be recognized and correctly read by a class file reader for correct
interpretation of the class file by a Java virtual machine implementation. The
StackMapTable attribute must be recognized and correctly interpreted by any
Java virtual machine implementation that recognizes class files whose major
version is 50.0 or above. The Signature attribute must be recognized and
correctly interpreted by any Java virtual machine implementation that recognizes
class files whose major version is 49.0 or above. The InnerClasses,
EnclosingMethod and Synthetic attributes must be recognized and correctly
read by a class file reader in order to properly implement the Java and Java 2
platform class libraries (§3.12). Use of the remaining predefined attributes is
optional; a class file reader may use the information they contain, or otherwise
must silently ignore those attributes.

4.8.1 Defining and Naming New Attributes

Compilers are permitted to define and emit class files containing new attributes in
the attributes tables of class file structures. Java virtual machine implementa-
tions are permitted to recognize and use new attributes found in the attributes

ATTRIBUTES 127

tables of class file structures. However, any attribute not defined as part of this Java
virtual machine specification must not affect the semantics of class or interface
types. Java virtual machine implementations are required to silently ignore
attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java virtual machine implementations are required to ignore
attributes they do not recognize, class files intended for that particular Java
virtual machine implementation will be usable by other implementations even if
those implementations cannot make use of the additional debugging information
that the class files contain.

Java virtual machine implementations are specifically prohibited from throwing
an exception or otherwise refusing to use class files simply because of the
presence of some new attribute. Of course, tools operating on class files may not
run correctly if given class files that do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than by Sun must have names
chosen according to the package naming convention defined by The Java
Language Specification. For instance, a new attribute defined by Netscape might
have the name "com.Netscape.new-attribute".3

Sun may define additional attributes in future versions of this class file
specification.

4.8.2 The ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in the attributes

table of the field_info (§4.6) structures. A ConstantValue attribute represents
the value of a constant field. There can be no more than one ConstantValue

attribute in the attributes table of a given field_info structure. If the field is
static (that is, the ACC_STATIC bit (Table 4.4) in the flags item of the field_info
structure is set) then the constant field represented by the field_info structure is
assigned the value referenced by its ConstantValue attribute as part of the initial-
ization of the class or interface declaring the constant field (§2.17.4). This occurs

3 The first edition of The Java Language Specification required that "com" be in
uppercase in this example. The second edition reversed that convention and
uses lowercase.

THE CLASS FILE FORMAT128

immediately prior to the invocation of the class or interface initialization method
(§3.9) of that class or interface.

If a field_info structure representing a non-static field has a ConstantValue
attribute, then that attribute must silently be ignored. Every Java virtual machine
implementation must recognize ConstantValue attributes.

The ConstantValue attribute has the following format:

ConstantValue_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 constantvalue_index;

}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "ConstantValue".

attribute_length

The value of the attribute_length item of a
ConstantValue_attribute structure must be 2.

constantvalue_index

The value of the constantvalue_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index gives the constant value represented by this attribute.
The constant_pool entry must be of a type appropriate to the
field, as shown by Table 4.6.

ATTRIBUTES 129

4.8.3 The Code Attribute

The Code attribute is a variable-length attribute used in the attributes table of
method_info structures. A Code attribute contains the Java virtual machine
instructions and auxiliary information for a single method, instance initialization
method (§3.9), or class or interface initialization method (§3.9). Every Java virtual
machine implementation must recognize Code attributes. If the method is either
native or abstract, its method_info structure must not have a Code attribute.
Otherwise, its method_info structure must have exactly one Code attribute.

The Code attribute has the following format:

Code_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 max_stack;

u2 max_locals;

u4 code_length;

u1 code[code_length];

u2 exception_table_length;

{ u2 start_pc;

u2 end_pc;

u2 handler_pc;

u2 catch_type;

} exception_table[exception_table_length];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of the Code_attribute structure are as follows:

Table 4.6 Constant value attribute types

Field Type Entry Type

long CONSTANT_Long

float CONSTANT_Float

double CONSTANT_Double

int, short, char, byte, boolean CONSTANT_Integer

String CONSTANT_String

THE CLASS FILE FORMAT130

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "Code".

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.

max_stack

The value of the max_stack item gives the maximum depth
(§3.6.2) of the operand stack of this method at any point during
execution of the method.

max_locals

The value of the max_locals item gives the number of local
variables in the local variable array allocated upon invocation of
this method, including the local variables used to pass parameters
to the method on its invocation.

The greatest local variable index for a value of type long or
double is max_locals−2. The greatest local variable index for a
value of any other type is max_locals−1.

code_length

The value of the code_length item gives the number of bytes in
the code array for this method. The value of code_length must
be greater than zero; the code array must not be empty.

code[]

The code array gives the actual bytes of Java virtual machine
code that implement the method.

When the code array is read into memory on a byte-
addressable machine, if the first byte of the array is aligned on a
4-byte boundary, the tableswitch and lookupswitch 32-bit offsets
will be 4-byte aligned. (Refer to the descriptions of those
instructions for more information on the consequences of code
array alignment.)

The detailed constraints on the contents of the code array are
extensive and are given in a separate section (§4.10).

ATTRIBUTES 131

exception_table_length

The value of the exception_table_length item gives the
number of entries in the exception_table table.

exception_table[]

Each entry in the exception_table array describes one
exception handler in the code array. The order of the handlers in
the exception_table array is significant. See Section 3.10 for
more details.

Each exception_table entry contains the following four
items:

start_pc, end_pc

The values of the two items start_pc and end_pc indicate
the ranges in the code array at which the exception handler is
active. The value of start_pc must be a valid index into the
code array of the opcode of an instruction. The value of
end_pc either must be a valid index into the code array of the
opcode of an instruction or must be equal to code_length,
the length of the code array. The value of start_pc must be
less than the value of end_pc.

The start_pc is inclusive and end_pc is exclusive; that
is, the exception handler must be active while the program
counter is within the interval [start_pc, end_pc).4

handler_pc

The value of the handler_pc item indicates the start of the
exception handler. The value of the item must be a valid
index into the code array and must be the index of the opcode
of an instruction.

catch_type

If the value of the catch_type item is nonzero, it must be a
valid index into the constant_pool table. The
constant_pool entry at that index must be a
CONSTANT_Class_info (§4.5.1) structure representing a

4 The fact that end_pc is exclusive is a historical mistake in the design of the
Java virtual machines.

THE CLASS FILE FORMAT132

class of exceptions that this exception handler is designated
to catch. The exception handler will be called only if the
thrown exception is an instance of the given class or one of its
subclasses.

If the value of the catch_type item is zero, this
exception handler is called for all exceptions. This is used to
implement finally (see Section 7.13, “Compiling
finally”).

attributes_count

The value of the attributes_count item indicates the number
of attributes of the Code attribute.

attributes[]

Each value of the attributes table must be an attribute structure
(§4.8). A Code attribute can have any number of optional
attributes associated with it.

Currently, the LineNumberTable (§4.8.12) and
LocalVariableTable (§4.8.13),attributes which contain
debugging information,

as well as the StackMapTable attribute (§4.8.4), are defined
and used with the Code attribute.

A Java virtual machine implementation is permitted to
silently ignore any or all attributes in the attributes table of a
Code attribute, except for the StackMapTable attribute.\, which
must be recognized if the class file version number is 50.0 or
above. Attributes not defined in this specification are not allowed
to affect the semantics of the class file, but only to provide
additional descriptive information (§4.8.1).

4.8.4 The StackMapTable Attribute

The stack map attribute is a variable-length attribute in the attributes table of a Code
attribute. The name of the attribute is StackMapTable. This attribute is used during
the process of verification by typechecking (§4.11.1).

A stack map attribute consists of zero or more stack map frames. Each stack map
frame specifies (either explicitly or implicitly) a bytecode offset, the verification
types (§4.11.1) for the local variables, and the verification types for the operand
stack.

ATTRIBUTES 133

The type checker deals with and manipulates the expected types of a method’s
local variables and operand stack. Throughout this section, a location refers to
either a single local variable or to a single operand stack entry.

We will use the terms stack map frame and type state interchangeably to describe
a mapping from locations in the operand stack and local variables of a method to
verification types. We will usually use the term stack map frame when such a
mapping is provided in the class file, and the term type state when the mapping is
inferred by the type checker.

If a method’s Code attribute does not have a StackMapTable attribute, it has an
implicit stack map attribute. This implicit stack map attribute is equivalent to a
StackMapTable attribute with number_of_entries equal to zero. A method’s
Code attribute may have at most one StackMapTable attribute, otherwise a
ClassFormatError is thrown.

The format of the stack map in the class file is given below.stack_map {

// attribute StackMapTable

u2 attribute_name_index;

u4 attribute_length

u2 number_of_entries;

stack_map_frame entries[number_of_entries];

}

Each stack_map_frame structure specifies the type state at a particular bytecode
offset. Each frame type specifies (explicitly or implicitly) a value, offset_delta,
that is used to calulate the actual bytecode offset at which it applies. The bytecode
offset at which the frame applies is given by adding 1 + offset_delta to the
offset of the previous frame, unless the previous frame is the initial frame of the
method, in which case the bytecode offset is offset_delta.

.

By using an offset delta rather than the actual bytecode offset we
ensure, by definition, that stack map frames are in the correctly sorted
order. Furthermore, by consistently using the formula offset_delta
+ 1 for all explicit frames, we guarantee the absence of duplicates.

All frame types, even full_frame, rely on the previous frame for
some of their semantics. This raises the question of what is the very first
frame? The initial frame is implicit, and computed from the method

THE CLASS FILE FORMAT134

descriptor. See the Prolog code for
methodInitialStackMapFrame.

The stack_map_frame structure consists of a one-byte tag followed by zero or
more bytes, giving more information, depending upon the tag.

A stack map frame may belong to one of several frame types

union stack_map_frame {

same_frame;

same_locals_1_stack_item_frame;

same_locals_1_stack_item_frame_extended;

chop_frame;

same_frame_extended;

append_frame;

full_frame;

}

The frame type same_frame is represented by tags in the range [0-63]. If the
frame type is same_frame, it means the frame has exactly the same locals as the
previous stack map frame and that the number of stack items is zero. The
offset_delta value for the frame is the value of the tag item, frame_type. The
form of such a frame is then:

same_frame {

u1 frame_type = SAME;/* 0-63 */

}

The frame type same_locals_1_stack_item_frame is represented by tags in
the range [64, 127]. If the frame_type is same_locals_1_stack_item_frame, it
means the frame has exactly the same locals as the previous stack map frame and
that the number of stack items is 1. The offset_delta value for the frame is the
value (frame_type - 64). There is a verification_type_info following the
frame_type for the one stack item. The form of such a frame is then:

same_locals_1_stack_item_frame {

u1 frame_type = SAME_LOCALS_1_STACK_ITEM;/* 64-127 */

verification_type_info stack[1];

}

Tags in the range [128-246] are reserved for future use.

ATTRIBUTES 135

The frame type same_locals_1_stack_item_frame_extended is represented
by the tag 247. The frame type same_locals_1_stack_item_frame_extended
indicates that the frame has exactly the same locals as the previous stack map
frame and that the number of stack items is 1. The offset_delta value for the
frame is given explicitly. There is a verification_type_info following the
frame_type for the one stack item. The form of such a frame is then:

same_locals_1_stack_item_frame_extended {

u1 frame_type = SAME_LOCALS_1_STACK_ITEM_EXTENDED;/*

247 */

u2 offset_delta;

verification_type_info stack[1];

}

The frame type chop_frame is represented by tags in the range [248-250]. If the
frame_type is chop_frame, it means that the operand stack is empty and the
current locals are the same as the locals in the previous frame, except that the k
last locals are absent. The value of k is given by the formula 251-frame_type.

The form of such a frame is then:

chop_frame {

u1 frame_type=CHOP; /* 248-250 */

u2 offset_delta;

}

The frame type same_frame_extended is represented by the tag value 251. If the
frame type is same_frame_extended, it means the frame has exactly the same
locals as the previous stack map frame and that the number of stack items is zero.

The form of such a frame is then:

same_frame_extended {

u1 frame_type = SAME_FRAME_EXTENDED;/* 251*/

u2 offset_delta;

}

The frame type append_frame is represented by tags in the range [252-254]. If
the frame_type is append_frame, it means that the operand stack is empty and the
current locals are the same as the locals in the previous frame, except that k
additional locals are defined. The value of k is given by the formula frame_type-
251.

The form of such a frame is then:

THE CLASS FILE FORMAT136

append_frame {

u1 frame_type = APPEND; /* 252-254 */

u2 offset_delta;

verification_type_info locals[frame_type -251];

}

The 0th entry in locals represents the type of the first additional local variable. If
locals[M] represents local variable N, then locals[M+1] represents local
variable N+1 if locals[M] is one of Top_variable_info,
Integer_variable_info, Float_variable_info, Null_variable_info,
UninitializedThis_variable_info, Object_variable_info, or
Uninitialized_variable_info, otherwise locals[M+1] represents local
variable N+2. It is an error if, for any index i, locals[i] represents a local
variable whose index is greater than the maximum number of local variables for
the method.

The frame type full_frame is represented by the tag value 255. The form of such
a frame is then:

full_frame {

u1 frame_type = FULL_FRAME; /* 255 */

u2 offset_delta;

u2 number_of_locals;

verification_type_info locals[number_of_locals];

u2 number_of_stack_items;

verification_type_info stack[number_of_stack_items];

}

The 0th entry in locals represents the type of local variable 0. If locals[M]
represents local variable N, then locals[M+1] represents local variable N+1 if
locals[M] is one of Top_variable_info, Integer_variable_info,
Float_variable_info, Null_variable_info,
UninitializedThis_variable_info, Object_variable_info, or
Uninitialized_variable_info, otherwise locals[M+1] represents local
variable N+2. It is an error if, for any index i, locals[i] represents a local
variable whose index is greater than the maximum number of local variables for
the method.

The 0th entry in stack represents the type of the bottom of the stack, and
subsequent entries represent types of stack elements closer to the top of the
operand stack. We shall refer to the bottom element of the stack as stack element

ATTRIBUTES 137

0, and to subsequent elements as stack element 1, 2 etc. If stack[M] represents
stack element N, then stack[M+1] represents stack element N+1 if stack[M] is
one of Top_variable_info, Integer_variable_info,
Float_variable_info, Null_variable_info,
UninitializedThis_variable_info, Object_variable_info, or
Uninitialized_variable_info, otherwise stack[M+1] represents stack
element N+2. It is an error if, for any index i, stack[i] represents a stack entry
whose index is greater than the maximum operand stack size for the method.

We say that an instruction in the bytecode has a corresponding stack map frame if
the offset in the offset item of the stack map frame is the same as the offset of the
instruction in the bytecodes.

The verification_type_info structure consists of a one-byte tag followed by
zero or more bytes, giving more information about the tag. Each
verification_type_info structure specifies the verification type of one or two
locations.

union verification_type_info {

Top_variable_info;

Integer_variable_info;

Float_variable_info;

Long_variable_info;

Double_variable_info;

Null_variable_info;

UninitializedThis_variable_info;

Object_variable_info;

Uninitialized_variable_info;

}

The Top_variable_info type indicates that the local variable has the
verification type top (.)

Top_variable_info {

u1 tag = ITEM_Top; /* 0 */

}

The Integer_variable_info type indicates that the location contains the
verification type int.

⊥

THE CLASS FILE FORMAT138

Integer_variable_info {

u1 tag = ITEM_Integer; /* 1 */

}

The Float_variable_info type indicates that the location contains the
verification type float.

Float_variable_info {

u1 tag = ITEM_Float; /* 2 */

}

The Long_variable_info type indicates that the location contains the
verification type long. If the location is a local variable, then:

• It must not be the local variable with the highest index.

• The next higher numbered local variable contains the verification type .

If the location is an operand stack entry, then:

• The current location must not be the topmost location of the operand stack.

• the next location closer to the top of the operand stack contains the verification type
.

This structure gives the contents of two locations in the operand stack or in the
local variables.

Long_variable_info {

u1 tag = ITEM_Long; /* 4 */

}

The Double_variable_info type indicates that the location contains the
verification type double. If the location is a local variable, then:

• It must not be the local variable with the highest index.

• The next higher numbered local variable contains the verification type .

If the location is an operand stack entry, then:

• The current location must not be the topmost location of the operand stack.

• the next location closer to the top of the operand stack contains the verification type
.

This structure gives the contents of two locations in in the operand stack or in the
local variables.

⊥

⊥

⊥

⊥

ATTRIBUTES 139

Double_variable_info {

u1 tag = ITEM_Double; /* 3 */

}

The Null_variable_info type indicates that location contains the verification
type null.

Null_variable_info {

u1 tag = ITEM_Null; /* 5 */

}

The UninitializedThis_variable_info type indicates that the location
contains the verification type uninitializedThis.

UninitializedThis_variable_info {

u1 tag = ITEM_UninitializedThis; /* 6 */

}

The Object_variable_info type indicates that the location contains an instance
of the class referenced by the constant pool entry.

Object_variable_info {

u1 tag = ITEM_Object; /* 7 */

u2 cpool_index;

}

The Uninitialized_variable_info indicates that the location contains the
verification type uninitialized(offset). The offset item indicates the offset of
the new instruction that created the object being stored in the location.

Uninitialized_variable_info {

u1 tag = ITEM_Uninitialized /* 8 */

u2 offset;

}

4.8.5 The Exceptions Attribute

The Exceptions attribute is a variable-length attribute used in the attributes

table of a method_info (§4.7) structure. The Exceptions attribute indicates which
checked exceptions a method may throw. There may be at most one Exceptions

attribute in each method_info structure.

THE CLASS FILE FORMAT140

The Exceptions attribute has the following format:

Exceptions_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 number_of_exceptions;

u2 exception_index_table[number_of_exceptions];

}

The items of the Exceptions_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be the CONSTANT_Utf8_info (§4.5.7)
structure representing the string "Exceptions".

attribute_length

The value of the attribute_length item indicates the attribute
length, excluding the initial six bytes.

number_of_exceptions

The value of the number_of_exceptions item indicates the
number of entries in the exception_index_table.

exception_index_table[]

Each value in the exception_index_table array must be a
valid index into the constant_pool table. The constant_pool
entry referenced by each table item must be a
CONSTANT_Class_info (§4.5.1) structure representing a class
type that this method is declared to throw.

A method should throw an exception only if at least one of the following three
criteria is met:

• The exception is an instance of RuntimeException or one of its subclasses.

• The exception is an instance of Error or one of its subclasses.

• The exception is an instance of one of the exception classes specified in the
exception_index_table just described, or one of their subclasses.

ATTRIBUTES 141

These requirements are not enforced in the Java virtual machine; they are
enforced only at compile time.

4.8.6 The InnerClasses Attribute

The InnerClasses attribute5 is a variable-length attribute in the attributes table
of the ClassFile (§4.2) structure. If the constant pool of a class or interface C con-
tains a CONSTANT_Class_info entry which represents a class or interface that is
not a member of a package, then C‘s ClassFile structure must have exactly one
InnerClasses attribute in its attributes table.

The InnerClasses attribute has the following format:

InnerClasses_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 number_of_classes;

{ u2 inner_class_info_index;

u2 outer_class_info_index;

u2 inner_name_index;

u2 inner_class_access_flags;

} classes[number_of_classes];

}

The items of the InnerClasses_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "InnerClasses".

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.

5 The InnerClasses attribute was introduced in JDK release 1.1 to support
nested classes and interfaces.

THE CLASS FILE FORMAT142

number_of_classes

The value of the number_of_classes item indicates the number
of entries in the classes array.

classes[]

Every CONSTANT_Class_info entry in the constant_pool table
which represents a class or interface C that is not a package
member must have exactly one corresponding entry in the
classes array.

If a class has members that are classes or interfaces, its
constant_pool table (and hence its InnerClasses attribute)
must refer to each such member, even if that member is not
otherwise mentioned by the class. These rules imply that a nested
class or interface member will have InnerClasses information
for each enclosing class and for each immediate member.

Each classes array entry contains the following four items:

inner_class_info_index

The value of the inner_class_info_index item must be
zero or a valid index into the constant_pool table. The
constant_pool entry at that index must be a
CONSTANT_Class_info (§4.5.1) structure representing C.
The remaining items in the classes array entry give
information about C.

outer_class_info_index

If C is not a member, the value of the
outer_class_info_index item must be zero. Otherwise,
the value of the outer_class_info_index item must be a
valid index into the constant_pool table, and the entry at
that index must be a CONSTANT_Class_info (§4.5.1)
structure representing the class or interface of which C is a
member.

inner_name_index

If C is anonymous, the value of the inner_name_index
item must be zero. Otherwise, the value of the
inner_name_index item must be a valid index into the
constant_pool table, and the entry at that index must be a
CONSTANT_Utf8_info (§4.5.7) structure that represents the

ATTRIBUTES 143

original simple name of C, as given in the source code from
which this class file was compiled.

inner_class_access_flags

The value of the inner_class_access_flags item is a
mask of flags used to denote access permissions to and
properties of class or interface C as declared in the source
code from which this class file was compiled. It is used by
compilers to recover the original information when source
code is not available. The flags are shown in Table 4.7.

All bits of the inner_class_access_flags item not
assigned in Table 4.7 are reserved for future use. They should be
set to zero in generated class files and should be ignored by Java
virtual machine implementations.

The Java virtual machine does not currently check the consistency of the
InnerClasses attribute with any class file actually representing a class or
interface referenced by the attribute.

Table 4.7 Nested class access and property flags

Flag Name Value Meaning

ACC_PUBLIC 0x0001 Marked or implicitly public in
source.

ACC_PRIVATE 0x0002 Marked private in source.

ACC_PROTECTED 0x0004 Marked protected in source.

ACC_STATIC 0x0008 Marked or implicitly static in
source.

ACC_FINAL 0x0010 Marked final in source.

ACC_INTERFACE 0x0200 Was an interface in source.

ACC_ABSTRACT 0x0400 Marked or implicitly abstract in
source.

ACC_SYNTHETIC 0x1000 Declared synthetic; Not present
in the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

THE CLASS FILE FORMAT144

4.8.7 The EnclosingMethod Attribute

The EnclosingMethod attribute is an optional fixed-length attribute in the
attributes table of the ClassFile (§4.2) structure. A class must have an
EnclosingMethod attribute if and only if it is a local class or an anonymous
class. A class may have no more than one EnclosingMethod attribute.

The EnclosingMethod attribute has the following format:

EnclosingMethod_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 class_index

u2 method_index;

}

The items of the EnclosingMethod_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "EnclosingMethod".

attribute_length

The value of the attribute_length item is four.

class_index

The value of the class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Class_info (§4.5.1) structure representing
the innermost class that encloses the declaration of the current
class.

method_index

If the current class is not immediately enclosed by a method or
constructor, then the value of the method_index item must be
zero. Otherwise, the value of the method_index item must be a
valid index into the constant_pool table. The constant_pool
entry at that index must be a CONSTANT_NameAndType_info
(§4.5.6) structure representing a the name and type of a method in

ATTRIBUTES 145

the class referenced by the class_index attribute above. It is the
responsibility of the Java compiler to ensure that the method
identified via the method_index is indeed the closest lexically
enclosing method of the class that contains this
EnclosingMethod attribute.

4.8.8 The Synthetic Attribute

The Synthetic attribute6 is a fixed-length attribute in the attributes table of
ClassFile (§4.2), field_info (§4.6), and method_info (§4.7) structures. A
class member that does not appear in the source code must be marked using a Syn-
thetic attribute, or else it must have its ACC_SYNTHETIC bit set. The only
exceptions to this requirement are for default constructors and the class initializa-
tion method.

The Synthetic attribute has the following format:

Synthetic_attribute {

u2 attribute_name_index;

u4 attribute_length;

}

The items of the Synthetic_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "Synthetic".

attribute_length

The value of the attribute_length item is zero.

6 The Synthetic attribute was introduced in JDK release 1.1 to support nested
classes and interfaces.

THE CLASS FILE FORMAT146

4.8.9 The Signature Attribute

The Signature attribute is an optional fixed-length attribute in the attributes

table of the ClassFile (§4.2), field_info(§4.6) and method_info (§4.7) struc-
tures.

The Signature attribute has the following format:

Signature_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 signature_index;

}

The items of the Signature_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info(§4.5.7) structure
representing the string "Signature".

attribute_length

The value of the attribute_length item of a
Signature_attribute structure must be 2.

signature_index

The value of the signature_index item must be a valid index
into the constant_pool table. The constant pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing either a class signature, if this signature attribute is
an attribute of a ClassFile structure, a method type signature, if
this signature is an attribuute of a method_info structure, or a
field type signature otherwise.

4.8.10 The SourceFile Attribute

The SourceFile attribute is an optional fixed-length attribute in the attributes

table of the ClassFile (§4.2) structure. There can be no more than one
SourceFile attribute in the attributes table of a given ClassFile structure.

The SourceFile attribute has the following format:

ATTRIBUTES 147

SourceFile_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 sourcefile_index;

}

The items of the SourceFile_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "SourceFile".

attribute_length

The value of the attribute_length item of a
SourceFile_attribute structure must be 2.

sourcefile_index

The value of the sourcefile_index item must be a valid index
into the constant_pool table. The constant pool entry at that
index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing a string.

The string referenced by the sourcefile_index item will be
interpreted as indicating the name of the source file from which
this class file was compiled. It will not be interpreted as
indicating the name of a directory containing the file or an
absolute path name for the file; such platform-specific additional
information must be supplied by the runtime interpreter or
development tool at the time the file name is actually used.

4.8.11 The SourceDebugExtension Attribute

The SourceDebugExtension attribute is an optional attribute in the attributes table
of the ClassFile (§4.2) structure. There can be no more than one SourceDe-

bugExtension attribute in the attributes table of a given ClassFile structure.
The SourceDebugExtension attribute has the following format:

THE CLASS FILE FORMAT148

 SourceDebugExtension_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 u1 debug_extension[attribute_length];

 }

The items of the SourceDebugExtension_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry at
that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "SourceDebugExtension".

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes. The value of the
attribute_length item is thus the number of bytes in the
debug_extension[] item.

debug_extension[]

The debug_extension array holds a string, which must be in
UTF-8 format. There is no terminating zero byte.The string in the
debug_extension item will be interpreted as extended
debugging information. The content of this string has no semantic
effect on the Java Virtual Machine.

4.8.12 The LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in the
attributes table of a Code (§4.8.3) attribute. It may be used by debuggers to
determine which part of the Java virtual machine code array corresponds to a given
line number in the original source file. If LineNumberTable attributes are present
in the attributes table of a given Code attribute, then they may appear in any
order. Furthermore, multiple LineNumberTable attributes may together represent a
given line of a source file; that is, LineNumberTable attributes need not be one-to-
one with source lines.

ATTRIBUTES 149

The LineNumberTable attribute has the following format:

LineNumberTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 line_number_table_length;

{ u2 start_pc;

u2 line_number;

} line_number_table[line_number_table_length];

}

The items of the LineNumberTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "LineNumberTable".

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.

line_number_table_length

The value of the line_number_table_length item indicates the
number of entries in the line_number_table array.

line_number_table[]

Each entry in the line_number_table array indicates that the
line number in the original source file changes at a given point in
the code array. Each line_number_table entry must contain the
following two items:

start_pc

The value of the start_pc item must indicate the index into
the code array at which the code for a new line in the
original source file begins. The value of start_pc must be
less than the value of the code_length item of the Code
attribute of which this LineNumberTable is an attribute.

THE CLASS FILE FORMAT150

line_number

The value of the line_number item must give the
corresponding line number in the original source file.

4.8.13 The LocalVariableTable Attribute

The LocalVariableTable attribute is an optional variable-length attribute of a
Code (§4.8.3) attribute. It may be used by debuggers to determine the value of a
given local variable during the execution of a method. If LocalVariableTable
attributes are present in the attributes table of a given Code attribute, then they
may appear in any order. There may be no more than one LocalVariableTable

attribute per local variable in the Code attribute.

The LocalVariableTable attribute has the following format:

LocalVariableTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 local_variable_table_length;

{ u2 start_pc;

u2 length;

u2 name_index;

u2 descriptor_index;

u2 index;

} local_variable_table[

local_variable_table_length];

}

The items of the LocalVariableTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "LocalVariableTable".

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.

ATTRIBUTES 151

local_variable_table_length

The value of the local_variable_table_length item
indicates the number of entries in the local_variable_table
array.

local_variable_table[]

Each entry in the local_variable_table array indicates a
range of code array offsets within which a local variable has a
value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each
entry must contain the following five items:

start_pc, length

The given local variable must have a value at indices into the
code array in the interval [start_pc, start_pc+length),
that is, between start_pc and start_pc+length

exclusive. The value of start_pc must be a valid index into
the code array of this Code attribute and must be the index
of the opcode of an instruction. The value of
start_pc+length must either be a valid index into the
code array of this Code attribute and be the index of the
opcode of an instruction, or it must be the first index beyond
the end of that code array.

name_index, descriptor_index

The value of the name_index item must be a valid index
into the constant_pool table. The constant_pool entry
at that index must contain a CONSTANT_Utf8_info (§4.5.7)
structure representing a valid unqualified name (§4.3.2)
denoting a local variable.

The value of the descriptor_index item must be a valid
index into the constant_pool table. The constant_pool
entry at that index must contain a CONSTANT_Utf8_info
(§4.5.7) structure. That CONSTANT_Utf8_info structure must
represent a field descriptor (§4.4.2) encoding the type of a
local variable in the source program.

index

The given local variable must be at index in the local
variable array of the current frame. If the local variable at

THE CLASS FILE FORMAT152

index is of type double or long, it occupies both index

and index+1.

4.8.14 The LocalVariableTypeTable Attribute

The LocalVariableTypeTable attribute is an optional variable-length attribute of
a Code (§4.8.3) attribute. It may be used by debuggers to determine the value of a
given local variable during the execution of a method. If LocalVariableTy-

peTable attributes are present in the attributes table of a given Code attribute,
then they may appear in any order. There may be no more than one LocalVari-

ableTypeTable attribute per local variable in the Code attribute.

The LocalVariableTypeTable attribute differs from the LocalVariableTable
attribute in that it provides signature information rather than descriptor information.
This difference is only significant for variables whose type is a generic reference
type. Such variables will appear in both tables, while variables of other types will
appear only in LocalVariableTable.

The LocalVariableTypeTable attribute has the following format:

LocalVariableTypeTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 local_variable_type_table_length;

{ u2 start_pc;

u2 length;

u2 name_index;

u2 signature_index;

u2 index;

} local_variable_type_table[

local_variable_type_table_length];

}

The items of the LocalVariableTypeTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "LocalVariableTypeTable".

ATTRIBUTES 153

attribute_length

The value of the attribute_length item indicates the length of
the attribute, excluding the initial six bytes.

local_variable_type_table_length

The value of the local_variable_type_table_length item
indicates the number of entries in the local_variable_table
array.

local_variable_type_table[]

Each entry in the local_variable_type_table array indicates
a range of code array offsets within which a local variable has a
value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each
entry must contain the following five items:

start_pc, length

The given local variable must have a value at indices into the
code array in the interval [start_pc, start_pc+length),
that is, between start_pc and start_pc+length

exclusive. The value of start_pc must be a valid index into
the code array of this Code attribute and must be the index
of the opcode of an instructiona. The value of
start_pc+length must either be a valid index into the
code array of this Code attribute and be the index of the
opcode of an instruction, or it must be the first index beyond
the end of that code array.

name_index, signature_index

The value of the name_index item must be a valid index
into the constant_pool table. The constant_pool entry
at that index must contain a CONSTANT_Utf8_info (§4.5.7)
structure representing a valid unqualified name (§4.3.2)
denoting a local variable.

The value of the signature_index item must be a valid
index into the constant_pool table. The constant_pool
entry at that index must contain a CONSTANT_Utf8_info
(§4.5.7) structure representing a field type signature (§4.4.4)
encoding the type of a local variable in the source program.

index

The given local variable must be at index in the local
variable array of the current frame. If the local variable at
index is of type double or long, it occupies both index

and index+1.

4.8.15 The Deprecated Attribute

The Deprecated attribute7 is an optional fixed-length attribute in the attributes

table of ClassFile (§4.2), field_info (§4.6), and method_info (§4.7) struc-
tures. A class, interface, method, or field may be marked using a Deprecated

attribute to indicate that the class, interface, method, or field has been superseded. A
runtime interpreter or tool that reads the class file format, such as a compiler, can
use this marking to advise the user that a superseded class, interface, method, or
field is being referred to. The presence of a Deprecated attribute does not alter the
semantics of a class or interface.

The Deprecated attribute has the following format:

Deprecated_attribute {

u2 attribute_name_index;

u4 attribute_length;

}

The items of the Deprecated_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry
at that index must be a CONSTANT_Utf8_info (§4.5.7) structure
representing the string "Deprecated".

attribute_length

The value of the attribute_length item is zero.

7 The Deprecated attribute was introduced in JDK release 1.1 to support the
@deprecated tag in documentation comments.

ATTRIBUTES 155

4.8.16 The RuntimeVisibleAnnotations attribute

The RuntimeVisibleAnnotations attribute is a variable length attribute in the
attributes table of the ClassFile, field_info, and method_info structures. The
RuntimeVisibleAnnotations attribute records runtime-visible Java program-
ming language annotations on the corresponding class, method, or field. Each
ClassFile, field_info, and method_info structure may contain at most one
RuntimeVisibleAnnotations attribute, which records all the runtime-visible
Java programming language annotations on the corresponding program element.
The JVM must make these annotations available so they can be returned by the
appropriate reflective APIs.
The RuntimeVisibleAnnotations attribute has the following format:

 RuntimeVisibleAnnotations_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 u2 num_annotations;

 annotation annotations[num_annotations];

 }

The items of the RuntimeVisibleAnnotations structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeVisibleAnno-

tations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of runtime-visible annotations represented by the struc-
ture, and their values.
num_annotations

The value of the num_annotations item gives the number of runtime-visible
annotations represented by the structure. Note that a maximum of 65535 runtime-
visible Java programming language annotations may be directly attached to a pro-
gram element.
annotations

THE CLASS FILE FORMAT156

Each value of the annotations table represents a single runtime-visible annota-
tion on a program element.
The annotation structure has the following format:

annotation {

 u2 type_index;

 u2 num_element_value_pairs;

 { u2 element_name_index;

element_value value;

 } element_value_pairs[num_element_value_pairs]

 }

The items of the annotation structure are as follows:
type_index

The value of the type_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing a field descriptor representing the
annotation type corresponding to the annotation represented by this annotation
structure.
num_element_value_pairs

The value of the num_element_value_pairs item gives the number of element-
value pairs of the annotation represented by this annotation structure. Note that a
maximum of 65535 element-value pairs may be contained in a single annotation.
element_value_pairs

Each value of the element_value_pairs table represents a single element-value
pair in the annotation represented by this annotation structure. Each
element_value_pairs entry contains the following two items:
element_name_index

The value of the element_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the name of the annotation type ele-
ment represented by this element_value_pairs entry.
value

The value of the value item represents the value of the element-value pair rep-
resented by this element_value_pairs entry.

4.8.16.1 The element_value structure

ATTRIBUTES 157

The element_value structure is a discriminated union representing the value of an
element-value pair. It is used to represent element values in all attributes that
describe annotations (RuntimeVisibleAnnotations, RuntimeInvisibleAnno-
tations, RuntimeVisibleParameterAnnotations, and RuntimeInvisi-

bleParameterAnnotations).

The element_value structure has the following format:

element_value {

 u1 tag;

 union {

 u2 const_value_index;

{

u2 type_name_index;

u2 const_name_index;

} enum_const_value;

 u2 class_info_index;

 annotation annotation_value;

{

 u2 num_values;

element_value values[num_values];

 } array_value;

 } value;

 }

The items of the element_value structure are as follows:

tag

The tag item indicates the type of this annotation element-value pair. The letters
'B', 'C', 'D', 'F', 'I', 'J', 'S', and 'Z' indicate a primitive type. These letters are inter-
preted as BaseType characters (§Table 4.2). The other legal values for tag are listed
with their interpretations in this table:

Table 4.8

tag value Element Type

s String

e enum constant

THE CLASS FILE FORMAT158

value
The value item represents the value of this annotation element. This item is a

union. The tag item, above, determines which item of the union is to be used:

const_value_index

The const_value_index item is used if the tag item is one of 'B', 'C', 'D', 'F',
'I', 'J', 'S', 'Z', or 's'. The value of the const_value_index item must be a valid
index into the constant_pool table. The constant_pool entry at that index must
be of the correct entry type for the field type designated by the tag item, as specified
in Table 4.8.
enum_const_value

The enum_const_value item is used if the tag item is 'e'. The
enum_const_value item consists of the following two items:

type_name_index
The value of the type_name_index item must be a valid index into the

constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the binary name (JLS 13.1) of the
type of the enum constant represented by this element_value structure.
const_name_index

The value of the const_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the simple name of the enum con-
stant represented by this element_value structure.

class_info_index

The class_info_index item is used if the tag item is 'c'. The
class_info_index item must be a valid index into the constant_pool table. The
constant_pool entry at that index must be a CONSTANT_Utf8_info structure rep-
resenting the return descriptor (§4.4.3) of the type that is reified by the class repre-
sented by this element_value structure (e.g., ‘V’ for Void.class, ‘Ljava/lang/
Object;’ for Object, etc.)

c class

@ annotation type

[array

tag value Element Type

ATTRIBUTES 159

annotation_value

The annotation_value item is used if the tag item is '@'. The element_value
structure represents a "nested" annotation.
array_value

The array_value item is used if the tag item is '['. The array_value item con-
sists of the following two items:

num_values

The value of the num_values item gives the number of elements in the array-
typed value represented by this element_value structure. Note that a maximum of
65535 elements are permitted in an array-typed element value.
values

Each value of the values table gives the value of an element of the array-typed
value represented by this element_value structure.

4.8.17 The RuntimeInvisibleAnnotations attribute

The RuntimeInvisibleAnnotations attribute is similar to the RuntimeVis-

ibleAnnotations attribute, except that the annotations represented by a Runt-

imeInvisibleAnnotations attribute must not be made available for return by
reflective APIs, unless the the JVM has been instructed to retain these annotations
via some implementation-specific mechanism such as a command line flag. In the
absence of such instructions, the JVM ignores this attribute.

The RuntimeInvisibleAnnotations attribute is a variable length attribute in the
attributes table of the ClassFile, field_info, and method_info structures. The
RuntimeInvisibleAnnotations attribute records runtime-invisible Java pro-
gramming language annotations on the corresponding class, method, or field. Each
ClassFile, field_info, and method_info structure may contain at most one
RuntimeInvisibleAnnotations attribute, which records all the runtime-invisible
Java programming language annotations on the corresponding program element.
The RuntimeInvisibleAnnotations attribute has the following format:

THE CLASS FILE FORMAT160

 RuntimeInvisibleAnnotations_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 u2 num_annotations;

 annotation annotations[num_annotations];

 }

The items of the RuntimeInvisibleAnnotations structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeInvisibleAn-
notations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of runtime-invisible annotations represented by the struc-
ture, and their values.
num_annotations

The value of the num_annotations item gives the number of runtime-invisible
annotations represented by the structure. Note that a maximum of 65535 runtime-
invisible Java programming language annotations may be directly attached to a pro-
gram element.
annotations

Each value of the annotations table represents a single runtime-invisible anno-
tation on a program element.

4.8.18 The RuntimeVisibleParameterAnnotations attribute

The RuntimeVisibleParameterAnnotations attribute is a variable length
attribute in the attributes table of the method_info structure. The RuntimeVisi-

bleParameterAnnotations attribute records runtime-visible Java programming
language annotations on the parameters of the corresponding method. Each
method_info structure may contain at most one RuntimeVisibleParameterAn-
notations attribute, which records all the runtime-visible Java programming lan-
guage annotations on the parameters of the corresponding method. The JVM must

ATTRIBUTES 161

make these annotations available so they can be returned by the appropriate reflec-
tive APIs.

The RuntimeVisibleParameterAnnotations attribute has the following format:

 RuntimeVisibleParameterAnnotations_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 u1 num_parameters;

 {

 u2 num_annotations;

 annotation annotations[num_annotations];

 } parameter_annotations[num_parameters];

 }

The items of the RuntimeVisibleParameterAnnotations structure are as fol-
lows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeVisibleParam-
eterAnnotations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of parameters, the number of runtime-visible annotations
on each parameter, and their values.
num_parameters

The value of the num_parameters item gives the number of parameters of the
method represented by the method_info structure on which the annotation occurs.
(This duplicates information that could be extracted from the method descriptor.)
parameter_annotations

Each value of the parameter_annotations table represents all of the runtime-
visible annotations on a single parameter. The sequence of values in the table corre-
sponds to the sequence of parameters in the method signature. Each
parameter_annotations entry contains the following two items:

THE CLASS FILE FORMAT162

num_annotations

The value of the num_annotations item indicates the number of runtime-vis-
ible annotations on the parameter corresponding to the sequence number of this
parameter_annotations element.
annotations

Each value of the annotations table represents a single runtime-visible anno-
tation on the parameter corresponding to the sequence number of this
parameter_annotations element.

4.8.19 The RuntimeInvisibleParameterAnnotations attribute

The RuntimeInvisibleParameterAnnotations attribute is similar to the Runt-
imeVisibleParameterAnnotations attribute, except that the annotations repre-
sented by a RuntimeInvisibleParameterAnnotations attribute must not be
made available for return by reflective APIs, unless the the JVM has specifically
been instructed to retain these annotations via some implementation-specific mecha-
nism such as a command line flag. In the absence of such instructions, the JVM
ignores this attribute.
The RuntimeInvisibleParameterAnnotations attribute is a variable length
attribute in the attributes table of the method_info structure. The RuntimeInvis-
ibleParameterAnnotations attribute records runtime-invisible Java program-
ming language annotations on the parameters of the corresponding method. Each
method_info structure may contain at most one RuntimeInvisibleParameter-
Annotations attribute, which records all the runtime-invisible Java programming
language annotations on the parameters of the corresponding method.

The RuntimeInvisibleParameterAnnotations attribute has the following for-
mat:

ATTRIBUTES 163

 RuntimeInvisibleParameterAnnotations_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 u1 num_parameters;

 {

 u2 num_annotations;

 annotation annotations[num_annotations];

 } parameter_annotations[num_parameters];

 }

The items of the RuntimeInvisibleParameterAnnotations structure are as fol-
lows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "RuntimeInvisiblePa-
rameterAnnotations".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the number of parameters, the number of runtime-invisible annota-
tions on each parameter, and their values.
num_parameters

The value of the num_parameters item gives the number of parameters of the
method represented by the method_info structure on which the annotation occurs.
(This duplicates information that could be extracted from the method descriptor.)
parameter_annotations

Each value of the parameter_annotations table represents all of the runtime-
invisible annotations on a single parameter. The sequence of values in the table cor-
responds to the sequence of parameters in the method signature. Each
parameter_annotations entry contains the following two items:

num_annotations

The value of the num_annotations item indicates the number of runtime-
invisible annotations on the parameter corresponding to the sequence number of this
parameter_annotations element.
annotations

THE CLASS FILE FORMAT164

Each value of the annotations table represents a single runtime-invisible
annotation on the parameter corresponding to the sequence number of this
parameter_annotations element.

4.8.20 The AnnotationDefault attribute

The AnnotationDefault attribute is a variable length attribute in the attributes
table of certain method_info structures, namely those representing elements of
annotation types. The AnnotationDefault attribute records the default value for
the element represented by the method_info structure. Each method_info struc-
tures representing an element of an annotation types may contain at most one Anno-
tationDefault attribute. The JVM must make this default value available so it can
be applied by appropriate reflective APIs.

 The AnnotationDefault attribute has the following format:
 AnnotationDefault_attribute {

 u2 attribute_name_index;

 u4 attribute_length;

 element_value default_value;

 }

 The items of the AnnotationDefault structure are as follows:
attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the string "AnnotationDefault".
attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes. The value of the attribute_length item is thus
dependent on the default value.
default_value

The default_value item represents the default value of the annotation type ele-
ment whose default value is represented by this AnnotationDefault attribute.

FORMAT CHECKING 165

4.9 Format Checking

When a prospective class file is loaded (§2.17.2) by the Java virtual machine, the
Java virtual machine first ensures that the file has the basic format of a class file.
This process is known as format checking. The first four bytes must contain the
right magic number. All recognized attributes must be of the proper length. The
class file must not be truncated or have extra bytes at the end. The constant pool
must not contain any superficially unrecognizable information.

This check for basic class file integrity is necessary for any
interpretation of the class file contents.

However, format checking is distinct from verification. Historically, the
two have been confused, because both are a form of integrity check.

4.10 Constraints on Java Virtual Machine Code

The Java virtual machine code for a method, instance initialization method (§3.9),
or class or interface initialization method (§3.9) is stored in the code array of the
Code attribute of a method_info structure of a class file. This section describes
the constraints associated with the contents of the Code_attribute structure.

4.10.1 Static Constraints

The static constraints on a class file are those defining the well-formedness of the
file. With the exception of the static constraints on the Java virtual machine code of
the class file, these constraints have been given in the previous sections. The static
constraints on the Java virtual machine code in a class file specify how Java virtual
machine instructions must be laid out in the code array and what the operands of
individual instructions must be.

The static constraints on the instructions in the code array are as follows:

THE CLASS FILE FORMAT166

• The code array must not be empty, so the code_length item cannot have the
value 0.

• The value of the code_length item must be less than 65536.

• The opcode of the first instruction in the code array begins at index 0.

• Only instances of the instructions documented in Section 6.4 may appear in the
code array. Instances of instructions using the reserved opcodes (§6.2) or any
opcodes not documented in this specification must not appear in the code
array.

• If the class file version number is 51.0 or above, then neither the jsr opcode or
the jsr_w opcode may appear in the code array.

• For each instruction in the code array except the last, the index of the opcode
of the next instruction equals the index of the opcode of the current instruction
plus the length of that instruction, including all its operands. The wide instruc-
tion is treated like any other instruction for these purposes; the opcode speci-
fying the operation that a wide instruction is to modify is treated as one of the
operands of that wide instruction. That opcode must never be directly reach-
able by the computation.

• The last byte of the last instruction in the code array must be the byte at index
code_length−1.

The static constraints on the operands of instructions in the code array are as fol-
lows:

• The target of each jump and branch instruction (jsr, jsr_w, goto, goto_w, ifeq,
ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmple,
if_icmplt, if_icmpge, if_icmpgt, if_acmpeq, if_acmpne) must be the opcode of
an instruction within this method. The target of a jump or branch instruction
must never be the opcode used to specify the operation to be modified by a
wide instruction; a jump or branch target may be the wide instruction itself.

• Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within this method. Each tableswitch instruction must
have a number of entries in its jump table that is consistent with the value of its
low and high jump table operands, and its low value must be less than or equal
to its high value. No target of a tableswitch instruction may be the opcode used

CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE 167

to specify the operation to be modified by a wide instruction; a tableswitch
target may be a wide instruction itself.

• Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method. Each lookupswitch instruction
must have a number of match-offset pairs that is consistent with the value of its
npairs operand. The match-offset pairs must be sorted in increasing numerical
order by signed match value. No target of a lookupswitch instruction may be
the opcode used to specify the operation to be modified by a wide instruction;
a lookupswitch target may be a wide instruction itself.

• The operand of each ldc instruction must be a valid index into the
constant_pool table. The operands of each ldc_w instruction must represent
a valid index into the constant_pool table. In both cases the constant pool
entry referenced by that index must be of type CONSTANT_Integer,
CONSTANT_Float, or CONSTANT_String if the class file version number is less
than 49.0. If the class file version is 49.0 or above, then the constant pool entry
referenced by the enty must be of type CONSTANT_Integer,
CONSTANT_Float, CONSTANT_String or CONSTANT_Class.

• The operands of each ldc2_w instruction must represent a valid index into the
constant_pool table. The constant pool entry referenced by that index must
be of type CONSTANT_Long or CONSTANT_Double. In addition, the subsequent
constant pool index must also be a valid index into the constant pool, and the
constant pool entry at that index must not be used.

• The operands of each getfield, putfield, getstatic, and putstatic instruction
must represent a valid index into the constant_pool table. The constant pool
entry referenced by that index must be of type CONSTANT_Fieldref.

• The indexbyte operands of each invokevirtual, invokespecial, and invokestatic
instruction must represent a valid index into the constant_pool table. The
constant pool entry referenced by that index must be of type
CONSTANT_Methodref.

• Only the invokespecial instruction is allowed to invoke an instance initializa-
tion method (§3.9). No other method whose name begins with the character
'<' ('\u003c') may be called by the method invocation instructions. In par-
ticular, the class or interface initialization method specially named <clinit>

is never called explicitly from Java virtual machine instructions, but only
implicitly by the Java virtual machine itself.

THE CLASS FILE FORMAT168

• The indexbyte operands of each invokeinterface instruction must
represent a valid index into the constant_pool table. The constant pool
entry referenced by that index must be of type CONSTANT_Interface-

Methodref. The value of the count operand of each invokeinterface
instruction must reflect the number of local variables necessary to store
the arguments to be passed to the interface method, as implied by the
descriptor of the CONSTANT_NameAndType_info structure referenced by the
CONSTANT_InterfaceMethodref constant pool entry. The fourth operand
byte of each invokeinterface instruction must have the value zero.

• The operands of each instanceof, checkcast, new, and anewarray instruction
and the indexbyte operands of each multianewarray instruction must repre-
sent a valid index into the constant_pool table. The constant pool entry ref-
erenced by that index must be of type CONSTANT_Class.

• No anewarray instruction may be used to create an array of more than 255
dimensions.

• No new instruction may reference a CONSTANT_Class constant_pool table
entry representing an array class. The new instruction cannot be used to create
an array.

• A multianewarray instruction must be used only to create an array of a type
that has at least as many dimensions as the value of its dimensions operand.
That is, while a multianewarray instruction is not required to create all of the
dimensions of the array type referenced by its indexbyte operands, it must not
attempt to create more dimensions than are in the array type. The dimensions
operand of each multianewarray instruction must not be zero.

• The atype operand of each newarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT
(9), T_INT (10), or T_LONG (11).

• The index operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret
instruction must be a nonnegative integer no greater than max_locals−1.

• The implicit index of each iload_<n>, fload_<n>, aload_<n>, istore_<n>,
fstore_<n>, and astore_<n> instruction must be no greater than the value of
max_locals−1.

• The index operand of each lload, dload, lstore, and dstore instruction must be
no greater than the value of max_locals−2.

CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE 169

• The implicit index of each lload_<n>, dload_<n>, lstore_<n>, and
dstore_<n> instruction must be no greater than the value of max_locals−2.

• The indexbyte operands of each wide instruction modifying an iload, fload,
aload, istore, fstore, astore, ret, or iinc instruction must represent a nonnegative
integer no greater than max_locals−1. The indexbyte operands of each wide
instruction modifying an lload, dload, lstore, or dstore instruction must repre-
sent a nonnegative integer no greater than max_locals−2.

4.10.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships
between Java virtual machine instructions. The structural constraints are as fol-
lows:

• Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variable array, regardless of the
execution path that leads to its invocation. An instruction operating on values
of type int is also permitted to operate on values of type boolean, byte, char,
and short. (As noted in §3.3.4 and §3.11.1, the Java virtual machine internally
converts values of types boolean, byte, char, and short to type int.)

• If an instruction can be executed along several different execution paths, the
operand stack must have the same depth (§3.6.2) prior to the execution of the
instruction, regardless of the path taken.

• At no point during execution can the order of the local variable pair holding a
value of type long or double be reversed or the pair split up. At no point can
the local variables of such a pair be operated on individually.

• No local variable (or local variable pair, in the case of a value of type long or
double) can be accessed before it is assigned a value.

• At no point during execution can the operand stack grow to a depth (§3.6.2)
greater than that implied by the max_stack item.

• At no point during execution can more values be popped from the operand
stack than it contains.

• Each invokespecial instruction must name an instance initialization method
(§3.9), a method in the current class, or a method in a superclass of the current
class.

THE CLASS FILE FORMAT170

• When the instance initialization method (§3.9) is invoked, an uninitialized
class instance must be in an appropriate position on the operand stack. An
instance initialization method must never be invoked on an initialized class
instance.

• When any instance method is invoked or when any instance variable is
accessed, the class instance that contains the instance method or instance
variable must already be initialized.

• There must never be an uninitialized class instance on the operand stack or in
a local variable when any backwards branch is taken.

• There must never be an uninitialized class instance on the operand stack or in
a local variable when a jsr or jsr_w instruction is executed.

• Each instance initialization method (§3.9), except for the instance initialization
method derived from the constructor of class Object, must call either another
instance initialization method of this or an instance initialization method of
its direct superclass super before its instance members are accessed. However,
instance fields of this that are declared in the current class may be assigned
before calling any instance initialization method.

• The arguments to each method invocation must be method invocation compat-
ible (§2.6.8) with the method descriptor (§4.4.3).

• The type of every class instance that is the target of a method invocation
instruction must be assignment compatible (§2.6.7) with the class or interface
type specified in the instruction. In addition, the type of the target of an
invokespecial instruction must be assignment compatible with the current
class, unless an instance initialization method is being invoked.

• Each return instruction must match its method’s return type. If the method
returns a boolean, byte, char, short, or int, only the ireturn instruction
may be used. If the method returns a float, long, or double, only an freturn,
lreturn, or dreturn instruction, respectively, may be used. If the method returns
a reference type, it must do so using an areturn instruction, and the type of
the returned value must be assignment compatible (§2.6.7) with the return
descriptor (§4.4.3) of the method. All instance initialization methods, class or
interface initialization methods, and methods declared to return void must use
only the return instruction.

CONSTRAINTS ON JAVA VIRTUAL MACHINE CODE 171

• If getfield or putfield is used to access a protected field of a superclass that is
a member of a different runtime package than the current class, then the type
of the class instance being accessed must be the same as or a subclass of the
current class. If invokevirtual or invokespecial is used to access a
protected method of a superclass that is a member of different runtime pack-
age than the current class, then the type of the class instance being accessed
must be the same as or a subclass of the current class

• The type of every class instance accessed by a getfield instruction or modified
by a putfield instruction must be assignment compatible (§2.6.7) with the class
type specified in the instruction.

• The type of every value stored by a putfield or putstatic instruction must be
compatible with the descriptor of the field (§4.4.2) of the class instance or class
being stored into. If the descriptor type is boolean, byte, char, short, or int,
then the value must be an int. If the descriptor type is float, long, or double,
then the value must be a float, long, or double, respectively. If the descriptor
type is a reference type, then the value must be of a type that is assignment
compatible (§2.6.7) with the descriptor type.

• The type of every value stored into an array by an aastore instruction must be
a reference type. The component type of the array being stored into by the aas-
tore instruction must also be a reference type.

• Each athrow instruction must throw only values that are instances of class
Throwable or of subclasses of Throwable. Each class mentioned in a
catch_type item of a method’s exception table must be Throwable or of sub-
classes of Throwable.

• Execution never falls off the bottom of the code array.

• No return address (a value of type returnAddress) may be loaded from a
local variable.

• The instruction following each jsr or jsr_w instruction may be returned to only
by a single ret instruction.

• No jsr or jsr_w instruction may be used to recursively call a subroutine if that
subroutine is already present in the subroutine call chain. (Subroutines can be
nested when using try-finally constructs from within a finally clause.)

• Each instance of type returnAddress can be returned to at most once. If a ret
instruction returns to a point in the subroutine call chain above the ret instruc-

THE CLASS FILE FORMAT172

tion corresponding to a given instance of type returnAddress, then that
instance can never be used as a return address.

4.11 Verification of class Files

Even though any compiler for the Java programming language must only produce
class files that satisfy all the static and structural constraints in the previous sections,
the Java virtual machine has no guarantee that any file it is asked to load was gener-
ated by that compiler or is properly formed. Applications such as web browsers do
not download source code, which they then compile; these applications download
already-compiled class files. The browser needs to determine whether the class

file was produced by a trustworthy compiler or by an adversary attempting to exploit
the virtual machine.

An additional problem with compile-time checking is version skew. A
user may have successfully compiled a class, say
PurchaseStockOptions, to be a subclass of TradingClass. But the
definition of TradingClass might have changed since the time the class
was compiled in a way that is not compatible with preexisting binaries.
Methods might have been deleted or had their return types or modifiers
changed. Fields might have changed types or changed from instance
variables to class variables. The access modifiers of a method or
variable may have changed from public to private. For a discussion
of these issues, see Chapter 13, “Binary Compatibility,” in the The
Java™ Language Specification.

Because of these potential problems, the Java virtual machine needs to verify for
itself that the desired constraints are satisfied by the class files it attempts to
incorporate. A Java virtual machine implementation verifies that each class file
satisfies the necessary constraints at linking time (§2.17.3).

Linking-time verification enhances the performance of the interpreter. Expensive
checks that would otherwise have to be performed to verify constraints at run time
for each interpreted instruction can be eliminated. The Java virtual machine can
assume that these checks have already been performed. For example, the Java
virtual machine will already know the following:

• There are no operand stack overflows or underflows.

• All local variable uses and stores are valid.

VERIFICATION OF class FILES 173

• The arguments to all the Java virtual machine instructions are of valid types.

The verifier also performs verification that can be done without looking at the
code array of the Code attribute (§4.8.3). The checks performed include the
following:

• Ensuring that final classes are not subclassed and that final methods are not
overridden.

• Checking that every class (except Object) has a direct superclass.

• Ensuring that the constant pool satisfies the documented static constraints: for
example, that each CONSTANT_Class_info structure in the constant pool con-
tains in its name_index item a valid constant pool index for a
CONSTANT_Utf8_info structure.

• Checking that all field references and method references in the constant pool
have valid names, valid classes, and a valid type descriptor.

Note that these checks do not ensure that the given field or method actually exists in
the given class, nor do they check that the type descriptors given refer to real classes.
They ensure only that these items are well formed. More detailed checking is per-
formed when the bytecodes themselves are verified, and during resolution.

There are two strategies that Java virtual machines may use for verification.
Verification by type checking must be used to verify class files whose version
number is greater than or equal to 50.0.

Verification by type inference must be supported by all Java virtual machines,
except those conforming to the JavaCard and J2ME CLDC profiles, in order to
verify class files whose version number is less than 50.0. Verification on virtual
machines supporting the J2ME CLDC and JavaCard profiles is governed by their
respective specifications.

4.11.1 Verification by Type Checking

Class files whose version number is greater than or equal to 50.0, must be verified
using the typechecking rules given in this section. If, and only if, the class file’s
major version number equals 50.0, then if the typechecking fails, a virtual machine
implementation may choose to attempt to perform verification by type inference.

THE CLASS FILE FORMAT174

This is a pragmatic adjustment, designed to ease the transition to the
new verification discipline.

Many tools that manipulate class files may alter the bytecodes of a
method in a manner that requires adjustment of the method’s stack
frame maps. If a tool does not make the necessary adjustments to the
stack frame maps, typechecking may fail, even though the bytecode is in
principle valid (and would consequently verify under the old type
inference scheme).

The need to adjust stack frame maps is a new requirement for tools that
operate on class files and/or bytecode streams. To allow the
implementors of such tools more time to adapt, virtual machines are
allowed to fall back to the older verification discipline, but only for a
limited time.

In cases where typechecking fails but type inference is invoked and
succeeds, a certain performance penalty is expected. Such a penalty is
unavoidable. It also should serve as a signal to tool vendors that their
output needs to be adjusted, and provides vendors with additional
incentive to make these adjustments.

If a virtual machine implementation ever attempts to perform verification by type
inference on version 50.0 classfiles, it must do so in all cases where verification by
typechecking fails.

This means that that a virtual machine cannot choose to resort to type
inference in once case and not in another. It must either reject class files
that do not verify via typechecking, or else consistently failover to the
type inferencing verifier whenever typechecking fails.

The type checker requires a list of stack frame maps for each method with a Code
attribute. The type checker reads the stack frame maps for each such method and
uses these maps to generate a proof of the type safety of the instructions in the
Code attribute. The list of stack frame maps is given by the StackMapTable
(§4.8.4) attribute of the Code attribute.

VERIFICATION OF class FILES 175

The intent is that a stack frame map must appear at the beginning of
each basic block in a method. The stack frame map specifies the
verification type of each operand stack entry and of each local variable
at the start of each basic block.

The type rules that the typechecker enforces are specified by means of Prolog
clauses. English language text is used to describe the type rules in an informal
way, while the Prolog code provides a formal specification.

Iff the predicate classIsTypeSafe is not true, the type checker must throw the
exception VerifyError to indicate that the class file is malformed. Otherwise,
the class file has type checked successfully and bytecode verification has
completed successfully.

classIsTypeSafe(Class) :-

classClassName(Class, Name),

classDefiningLoader(Class, L),

superclassChain(Name, L, Chain),

Chain \= [],

classSuperClassName(Class, SuperclassName),

loadedClass(SuperclassName, L, Superclass),

classIsNotFinal(Superclass),

classMethods(Class, Methods),

checklist(methodIsTypeSafe(Class), Methods).

classIsTypeSafe(Class) :-

classClassName(Class, ‘java/lang/Object’),

classDefiningLoader(Class, L),

isBootstrapClassLoader(L),

classMethods(Class, Methods),

checklist(methodIsTypeSafe(Class), Methods).

Thus, a class is type safe if all its methods are type safe, and it does not
subclass a final class.

THE CLASS FILE FORMAT176

The predicate classIsTypeSafe assumes that Class is a Prolog term representing
a binary class that has been successfully parsed and loaded. This specification
does not mandate the precise structure of this term, but does require that certain
predicates (e.g., classMethods) be defined upon it, as specified in Section
4.11.1.3.1.

For example, we assume a predicate classMethods(Class,
Methods) that, given a term representing a class as described
above as its first argument, binds its second argument to a list
comprising all the methods of the class, represented in a
convenient form described below.

We also require the existence of a predicate loadedClass(Name,
InitiatingLoader, ClassDefinition) which asserts that there exists a class named
Name whose representation (in accordance with this specification) when loaded
by the class loader InitiatingLoader is ClassDefinition. additional required
predicates are discussed in §4.11.1.3.1.

Individual instructions are presented as terms whose functor is the name of the
instruction and whose arguments are its parsed operands.

For example, an aload instruction is represented as the term
aload(N), which includes the index N that is the operand of the
instruction.

A few instructions have operands that are constant pool entries representing
methods or fields. As specified in §4.4.3, methods are represented by
CONSTANT_InterfaceMethodref_info (for interface methods) or
CONSTANT_Methodref_info (for other methods) structures in the constant pool.
Such structures are represented here as functor applications of the form
imethod(MethodClassName, MethodName, MethodDescriptor) (for
interface methods) or method (MethodClassName, MethodName,
MethodDescriptor) (for other methods), where MethodClassName is the name
of the class referenced by the class_index item for the structure, and
MethodName and MethodDescriptor correspond to the name and type
descriptor referenced by the name_and_type_index of the structure.

VERIFICATION OF class FILES 177

Similarly, fields are represented by CONSTANT_Fieldref_info structures in the
class file. These structures are represented here as functor applications of the form
field(FieldClassName, FieldName, FieldDescriptor) where FieldClassName
is the name of the class referenced by the class_index item in the structure, and
FieldName and FieldDescriptor correspond to the name and type descriptor
referenced by the name_and_type_index item of the structure. For clarity, we
assume that type descriptors are mapped into more readable names: the leading L
and trailing ; are dropped from class names, and the base type characters used for
primitive types are mapped to the names of those types).

So, a getfield instruction whose operand was an index into the
constant pool that refers to a field foo of type F in class Bar would be
represented as getfield(field(‘Bar’, ‘foo’, ‘F’)).

Constant pool entries that refer to constant values, such as CONSTANT_String,
CONSTANT_Integer, CONSTANT_Float, CONSTANT_Long, CONSTANT_Double
and CONSTANT_Class, are encoded via the functors whose names are string, int,
float, long, double and classConstant respectively.

So an ldc instruction for loading the integer 91 would be encoded as
ldc(int(91)).

The instructions as a whole are represented as a list of terms of the form
instruction(Offset, AnInstruction).

For example instruction(21, aload(1)).

The order of instructions in this list must be the same as in the class file.

Stack frame maps are represented as a list of terms of the form stackMap(Offset,
TypeState) where Offset is an integer indicating the offset of the instruction the
frame map applies to, and TypeState is the expected incoming type state for that
instruction. The order of instructions in this list must be the same as in the class
file.

TypeState has the form frame(Locals, OperandStack, Flags).

THE CLASS FILE FORMAT178

Locals is a list of verification types, such that the Nth element of the list (with 0
based indexing) represents the type of local variable N.

If any local variable in Locals has the type uninitializedThis, Flags is
[flagThisUninit], otherwise it is an empty list.

OperandStack is a list of types, such that the first element represents the type of
the top of the operand stack, and the elements below the top follow in the
appropriate order.

However, note again that types of size 2 are represented by two entries, with the
first entry being top and the second one being the type itself.

So a stack with a double, an int and a long would be represented
as [top, double, int, top, long].

Array types are represented by applying the functor arrayOf to an argument
denoting the component type of the array. Other reference types are represented
using the functor class. Hence class(N, L) represents the class whose binary
name is N as loaded by the loader L.

Thus, L is an initiating loader of the class represented by class(N, L).
It may, or may not, be its defining loader.

The type uninitialized(offset) is represented by applying the functor
uninitialized to an argument representing the numerical value of the offset. Other
verification types are represented by Prolog atoms whose name denotes the
verification type in question.

So, the class Object would be represented as class(‘java/lang/
Object’, BL), where BL is the bootstrap loader. The types int[] and
Object[] would be represented by arrayOf(int) and
arrayOf(class(‘java/lang/Object’, BL)) respectively.

Flags is a list which may either be empty or have the single element
flagThisUninit.

VERIFICATION OF class FILES 179

This flag is used in constructors, to mark type states where initialization
of this has not yet been completed. In such type states, it is illegal to
return from the method.

4.11.1.1 The Type hierarchy

The typechecker enforces a type system based upon a hierarchy of verification
types, illustrated in figure 1 below. Most verifier types have a direct correspondence
with Java virtual machine field type descriptors as given in Table 4.2. The only
exceptions are the field descriptors B, C, S and Z all of which correspond to the
verifier type int.

4.11.1.2 Subtyping Rules

Subtyping is reflexive

isAssignable(X, X) .

isAssignable(oneWord, top).

isAssignable(twoWord, top).

isAssignable(int, X) :- isAssignable(oneWord, X).

isAssignable(float, X) :- isAssignable(oneWord, X).

isAssignable(long, X) :- isAssignable(twoWord, X).

isAssignable(double, X) :- isAssignable(twoWord, X).

isAssignable(reference, X) :- isAssignable(oneWord, X).

isAssignable(uninitialized, X) :- isAssignable(reference, X).

These subtype rules are not necessarily the most obvious formulation of
subtyping. There is a clear split between subtyping rules for reference

THE CLASS FILE FORMAT180

types in the Java programming language, and rules for the remaining
verification types.

⊥

Java class hierarchy

Figure 1: The verification type Hierarchy

long double

twoWord

null

Object

reference

uninitialized

uninitialized(offset)uninitializedThis

floatint

oneWord

VERIFICATION OF class FILES 181

Subtype rules for the reference types in the Java programming language
are specified recursively in the obvious way. The remaining verification
types have subtypes rules of the form:

subtype(v, X) :- subtype(the_direct_supertype_of_v, X).

That is, v is a subtype of X if the direct supertype of v is a subtype of X.

Note that the actual subtype rule is called isAssignable in the Prolog
code below.

We also have a rule that says subtyping is reflexive, so together these
rules cover most verification types that are not reference types in the
Java programming language.

The aforementioned split allows us to state general subtyping relations
between the Java programming language types and other verification
types.

These relations hold independently of the Java type’s position in the
hierarchy. These rules are useful for the reference implementation,
where they help prevent duplicate answers and excessive class loading.

For example, we don’t want to start climbing up the class hierarchy in
response to a query of the form class(foo, L) <: twoWord. If we use
the same predicates for the entire hierarchy, we cannot restrict the climb
to cases where we compare two classes.

It would be nicer to have more uniform rules for the specification, but
they are not well suited for the reference implementation. We’d like the
reference implementation to be as close to the specification as possible,
so this is a reasonable compromise.

isAssignable(class(_, _), X) :- isAssignable(reference, X).

isAssignable(arrayOf(_), X) :- isAssignable(reference, X).

isAssignable(uninitializedThis, X) :- isAssignable(uninitialized, X).

isAssignable(uninitialized(_), X) :- isAssignable(uninitialized, X).

isAssignable(null, class(_, _)).

isAssignable(null, arrayOf(_)).

isAssignable(null, X) :-

isAssignable(class(’java/lang/Object’, BL), X),

THE CLASS FILE FORMAT182

isBootstrapLoader(BL).

isAssignable(class(X, Lx), class(Y, Ly)) :-

isJavaAssignable(class(X, Lx), class(Y, Ly)).

isAssignable(arrayOf(X), class(Y, L)) :-

isJavaAssignable(arrayOf(X), class(Y, L)).

isAssignable(arrayOf(X), arrayOf(Y)) :-

isJavaAssignable(arrayOf(X),arrayOf(Y)).

For assignments, interfaces are treated like Object.

isJavaAssignable(class(_, _), class(To, L)) :-

loadedClass(To, L, ToClass),

classIsInterface(ToClass).

isJavaAssignable(From, To) :-

isJavaSubclassOf(From, To).

Arrays are subtypes of Object.

isJavaAssignable(arrayOf(_), class(’java/lang/Object’, BL)) :-

isBootstrapLoader(BL).

The intent here is that array types are subtypes of Cloneable and
java.io.Serializable.

isJavaAssignable(arrayOf(_), X) :-

isArrayInterface(X).

VERIFICATION OF class FILES 183

The subtyping relation between arrays of primitive type is the identity
relation.

isJavaAssignable(arrayOf(X), arrayOf(Y)) :-

atom(X), atom(Y), X = Y.

Subtyping between arrays of reference type is covariant.

isJavaAssignable(arrayOf(X), arrayOf(Y)) :-

compound(X), compound(Y), isJavaAssignable(X, Y).

isArrayInterface(class(’java/lang/Cloneable’, BL)) :-

isBootstrapLoader(BL).

isArrayInterface(class(’java/io/Serializable’, BL)) :-

isBootstrapLoader(BL).

Subclassing is reflexive.

isJavaSubclassOf(class(SubClassName, L), class(SubClassName, L)).

isJavaSubclassOf(class(SubClassName, LSub),

class(SuperClassName, LSuper)) :-

superclassChain(SubClassName, LSub, Chain),

member(class(SuperclassName, L), Chain),

loadedClass(SuperClassName, L, Sup),

loadedClass(SuperClassName, LSuper, Sup).

sizeOf(X, 2) :- isAssignable(X, twoWord).

sizeOf(X, 1) :- isAssignable(X, oneWord).

sizeOf(top, 1).

THE CLASS FILE FORMAT184

Subtyping is extended pointwise to type states.

frameIsAssignable(frame(Locals1, StackMap1, Flags1),

 frame(Locals2, StackMap2, Flags2)) :-

length(StackMap1, StackMapLength),

length(StackMap2, StackMapLength),

maplist(isAssignable, Locals1, Locals2),

maplist(isAssignable, StackMap1, StackMap2),

subset(Flags1, Flags2).

4.11.1.3 Typechecking Rules

4.11.1.3.1 Accessors

Stipulated Accessors: Throughout this specification, we assume the existence
of certain Prolog predicates whose formal definitions are not given in the
specification. In this section, we list these predicates and specify their expected
behavior.

parseFieldDescriptor(Descriptor, Type)

Converts a field descriptor, Descriptor, into the corresponding verification type
Type (see the beginning of Section 4.11.1.1 for the specification of this
correspondence).

parseMethodDescriptor(Descriptor, ArgTypeList, ReturnType)

Converts a method descriptor, Descriptor, into a list of verification types,
ArgTypeList, corresponding (Section 4.11.1.1) to the method argument types, and
a verification type, ReturnType, corresponding to the return type.

parseCodeAttribute(Class, Method, FrameSize, MaxStack, ParsedCode,
Handlers, StackMap)

Extracts the instruction stream, ParsedCode, of the method Method in Class, as
well as the maximum operand stack size, MaxStack, the maximal number of
local variables, FrameSize, the exception handlers, Handlers, and the stack map
StackMap. The representation of the instruction stream and stack map attribute
must be as specified in the beginning of §4.11.1 Each exception handler is
represented by a functor application of the form handler(Start, End, Target,
ClassName) whose arguments are, respectively, the start and end of the range of

VERIFICATION OF class FILES 185

instructions covered by the handler, the first instruction of the handler code, and
the name of the exception class that this handler is designed to handle.

classClassName(Class, ClassName)

Extracts the name, ClassName, of the class Class.

classIsInterface(Class)

True iff the class, Class, is an interface.

classIsNotFinal(Class)

True iff the class, Class, is not a final class.

classSuperClassName(Class, SuperClassName)

Extracts the name, SuperClassName, of the superclass of class Class.

classInterfaces(Class, Interfaces)

Extracts a list, Interfaces, of the direct superinterfaces of the class Class.

classMethods(Class, Methods)

Extracts a list, Methods, of the methods declared in the class Class.

classAttributes(Class, Attributes)

Extracts a list, Attributes, of the attributes of the class Class. Each attribute is
represented as a functor application of the form attribute(AttributeName,
AttributeContents), where AttributeName is the name of the attribute. The
format of the attributes contents is unspecified.

classDefiningLoader(Class, Loader)

Extracts the defining class loader, Loader, of the class Class.

isBootstrapLoader(Loader)

True iff the class loader Loader is the bootstrap class loader.

methodName(Method, Name)

Extracts the name, Name, of the method Method.

methodAccessFlags(Method, AccessFlags)

Extracts the access flags, AccessFlags, of the method Method.

methodDescriptor(Method, Descriptor)

Extracts the descriptor, Descriptor, of the method Method.

methodAttributes(Method, Attributes)

Extracts a list, Attributes, of the attributes of the method Method.

THE CLASS FILE FORMAT186

isNotFinal(Method, Class)

True iff Method in class Class is not final.

isProtected(MemberClass, MemberName, MemberDescriptor)

True iff there is a member named MemberName with descriptor
MemberDescriptor in the class MemberClass and it is protected.

isNotProtected(MemberClass, MemberName, MemberDescriptor)

True iff there is a member named MemberName with descriptor
MemberDescriptor in the class MemberClass and it is not protected.

samePackageName(Class1, Class2)

True iff the package names of Class1 and Class2 are tthe same.

differentPackageName(Class1, Class2)

True iff the package names of Class1 and Class2 are different.

There is a principle guiding the determination as to which accessors are
fully specified and which are stipulated. We do not want to over-specify
the representation of the class file. Providing specific accessors to the
class or method term would force us to completely specify a format for
the Prolog term representing the class file.

Specified Accessors and Utilities: We also provide accessor and utility rules
that extract necessary information from the representation of the class and its
methods.

An environment is a six-tuple consisting of a class, a method, the
declared return type of the method, the instructions in a method, the
maximal size of the operand stack, and a list of exception handlers.

maxOperandStackLength(Environment, MaxStack) :-

Environment = environment(_Class, _Method, _ReturnType,
_Instructions, MaxStack, _Handlers).

exceptionHandlers(Environment, Handlers) :-

VERIFICATION OF class FILES 187

Environment = environment(_Class, _Method, _ReturnType,
_Instructions, _, Handlers).

thisMethodReturnType(Environment, ReturnType) :-

Environment = environment(_Class, _Method, ReturnType,
_Instructions, _, _).

thisClass(Environment, class(ClassName, L)) :-

Environment = environment(Class, _Method, _ReturnType,
_Instructions, _, _),

classDefiningLoader(Class, L),

classClassName(Class, ClassName).

allInstructions(Environment, Instructions) :-

Environment = environment(_Class, _Method, _ReturnType,
Instructions, _, _).

offsetStackFrame(Environment, Offset, StackFrame) :-

allInstructions(Environment, Instructions),

member(stackMap(Offset, StackFrame), Instructions).

currentClassLoader(Environment, Loader) :-

thisClass(Environment, class(_, Loader)).

notMember(_, []).

notMember(X, [A | More]) :- X \= A, notMember(X, More).

differentRuntimePackage(Class1, Class2) :-
sameRuntimePackage(Class1, Class2) :-

classDefiningLoader(Class1, L),

classDefiningLoader(Class2, L),

samePackageName(Class1, Class2).

THE CLASS FILE FORMAT188

differentRuntimePackage(Class1, Class2) :-

classDefiningLoader(Class1, L1),

classDefiningLoader(Class2, L2),

L1 \= L2.

differentRuntimePackage(Class1, Class2) :-

differentPackageName(Class1, Class2).

4.11.1.3.2 Abstract & Native Methods

Abstract methods are considered to be type safe if they do not override
a final method.

methodIsTypeSafe(Class, Method) :-

doesNotOverrideFinalMethod(Class, Method),

methodAccessFlags(Method, AccessFlags),

member(abstract, AccessFlags).

Native methods are considered to be type safe if they do not override a
final method.

methodIsTypeSafe(Class, Method) :-

doesNotOverrideFinalMethod(Class, Method),

methodAccessFlags(Method, AccessFlags),

member(native, AccessFlags).

doesNotOverrideFinalMethod(class(‘java/lang/Object’, L), Method) :-

isBootstrapLoader(L).

doesNotOverrideFinalMethod(Class, Method) :-

VERIFICATION OF class FILES 189

classSuperClassName(Class, SuperclassName),

classDefiningLoader(Class, L),

loadedClass(SuperclassName, L, Superclass),

classMethods(Superclass, MethodList),

finalMethodNotOverridden(Method, Superclass, MethodList).

finalMethodNotOverridden(Method, Superclass, MethodList) :-

methodName(Method, Name),

methodDescriptor(Method, Descriptor),

member(method(_, Name, Descriptor), MethodList),

isNotFinal(Method, Superclass).

finalMethodNotOverridden(Method, Superclass, MethodList) :-

methodName(Method, Name),

methodDescriptor(Method, Descriptor),

notMember(method(_, Name, Descriptor), MethodList),

doesNotOverrideFinalMethod(Superclass, Method).

4.11.1.3.3 Checking Code

Non-abstract, non-native methods are type correct if they have code and
the code is type correct.

methodIsTypeSafe(Class, Method) :-

doesNotOverrideFinalMethod(Class, Method),

methodAccessFlags(Method, AccessFlags),

methodAttributes(Method, Attributes),

notMember(native, AccessFlags),

notMember(abstract, AccessFlags),

member(attribute(’Code’, _), Attributes),

THE CLASS FILE FORMAT190

methodWithCodeIsTypeSafe(Class, Method).

A method with code is type safe if it is possible to merge the code and
the stack frames into a single stream such that each stack map precedes
the instruction it corresponds to, and the resulting merged stream is type
correct.

methodWithCodeIsTypeSafe(Class, Method) :-

parseCodeAttribute(Class, Method, FrameSize, MaxStack,
ParsedCode, Handlers, StackMap),

mergeStackMapAndCode(StackMap, ParsedCode,
MergedCode),

methodInitialStackFrame(Class, Method, FrameSize,
StackFrame, ReturnType),

Environment =

environment(Class, Method, ReturnType,
MergedCode, MaxStack, Handlers),

handlersAreLegal(Environment),

mergedCodeIsTypeSafe(Environment, MergedCode,
StackFrame).

The initial type state of a method consists of an empty operand stack
and local variable types derived from the type of this and the
arguments, as well as the appropriate flag, depending on whether this is
an <init> method.

methodInitialStackFrame(Class, Method, FrameSize,

 frame(Locals, [], Flags), ReturnType):-

methodDescriptor(Method, Descriptor),

parseMethodDescriptor(Descriptor, RawArgs, ReturnType),

expandTypeList(RawArgs, Args),

methodInitialThisType(Class, Method, ThisList),

flags(ThisList, Flags),

append(ThisList, Args, ThisArgs),

VERIFICATION OF class FILES 191

expandToLength(ThisArgs, FrameSize, top, Locals).

flags([uninitializedThis], [flagThisUninit]).

flags(X, []) :- X \= [uninitializedThis].

expandToLength(List, Size, _Filler, List) :- length(List, Size).

expandToLength(List, Size, Filler, Result) :-

length(List, ListLength),

ListLength < Size,

Delta is Size - ListLength,

length(Extra, Delta),

checklist(=(Filler), Extra),

append(List, Extra, Result).

For a static method this is irrelevant; the list is empty. For an instance
method, we get the type of this and put it in a list.

methodInitialThisType(_Class, Method, []) :-

methodAccessFlags(Method, AccessFlags),

member(static, AccessFlags),

methodName(Method, MethodName),

MethodName \= ’<init>’.

methodInitialThisType(Class, Method, [This]) :-

methodAccessFlags(Method, AccessFlags),

 notMember(static, AccessFlags),

 instanceMethodInitialThisType(Class, Method, This).

In the <init> method of Object the type of this is Object. In other
<init> methods, the type of this is uninitializedThis.
Otherwise, the type of this in an instance method is class(N, L),
where N is the name of the class containing the method and L is its
defining class loader.

THE CLASS FILE FORMAT192

instanceMethodInitialThisType(Class, Method, class(ClassName, L)) :-

methodName(Method, MethodName),

MethodName \= ’<init>’,

classDefiningLoader(Class, L),

classClassName(Class, ClassName).

instanceMethodInitialThisType(Class, Method,

class(’java/lang/Object’, L)) :-

methodName(Method, ’<init>’),

classDefiningLoader(Class, L),

isBootstrapLoader(L),

classClassName(Class, ’java/lang/Object’).

instanceMethodInitialThisType(Class, Method, uninitializedThis) :-

methodName(Method, ’<init>’),

classClassName(Class, ClassName),

classDefiningLoader(Class, CurrentLoader),

superclassChain(ClassName, CurrentLoader, Chain),

Chain \= [].

Below are the rules for iterating through the code stream. The
assumption is that the stream is a well formed mixture of instructions
and stack maps, such that the stack map for bytecode index N appears
just before instruction N.

The rules for building this mixed stream are given later, by the predicate
mergeStackMapAndCode.

The special marker aftergoto is used to indicate an unconditional
branch.

If we have an unconditional branch at the end of the code, stop.

mergedCodeIsTypeSafe(_Environment, [endOfCode(Offset)], afterGoto).

VERIFICATION OF class FILES 193

After an unconditional branch, if we have a stack map giving the type
state for the following instructions, we can proceed and typecheck them
using the type state provided by the stack map.

mergedCodeIsTypeSafe(Environment, [stackMap(Offset, MapFrame) |
MoreCode], afterGoto):-

mergedCodeIsTypeSafe(Environment, MoreCode, MapFrame).

If we have a stack map and an incoming type state, the type state must
be assignable to the one in the stack map. We may then proceed to type
check the rest of the stream with the type state given in the stack map.

mergedCodeIsTypeSafe(Environment, [stackMap(Offset, MapFrame) |
MoreCode], frame(Locals, OperandStack, Flags)) :-

frameIsAssignable(frame(Locals, OperandStack, Flags),
MapFrame),

mergedCodeIsTypeSafe(Environment, MoreCode, MapFrame).

It is illegal to have code after an unconditional branch without a stack
frame map being provided for it.

mergedCodeIsTypeSafe(_Environment, [instruction(_,_) | _MoreCode],
afterGoto) :-

write_ln(’No stack frame after unconditional branch’),

fail.

A merged code stream is type safe relative to an incoming type state T,
if it begins with an instruction I that is type safe relative to T, I satisfies
its exception handlers, and the tail of the stream is type safe given the
type state following that execution of I.

mergedCodeIsTypeSafe(Environment, [instruction(Offset,Parse) |
MoreCode], frame(Locals, OperandStack, Flags)) :-

THE CLASS FILE FORMAT194

Verify the instruction. NextStackFrame indicates what falls through to
the following instruction. ExceptionStackFrame indicates what is
passed to exception handlers.

instructionIsTypeSafe(Parse, Environment, Offset, frame(Locals,
OperandStack, Flags), NextStackFrame, ExceptionStackFrame),

instructionSatisfiesHandlers(Environment, Offset,
ExceptionStackFrame),

mergedCodeIsTypeSafe(Environment, MoreCode,
NextStackFrame).

Branching to a target is type safe if the target has an associated stack
frame, Frame, and the current stack frame, StackFrame, is assignable
to Frame.

targetIsTypeSafe(Environment, StackFrame, Target) :-

offsetStackFrame(Environment, Target, Frame),

frameIsAssignable(StackFrame, Frame).

4.11.1.3.4 Combining Stack Maps and Instruction Streams

The merge of a stream of stack frames and a stream of instructions is defined in
this section.

Merging an empty StackMap and a list of instructions yields the
original list of instructions.

mergeStackMapAndCode([], CodeList, CodeList).

Given a list of stack frame maps beginning with the type state for the
instruction at Offset, and a list of instructions beginning at Offset, the
merged list consists of the head of the stack frame list, followed by the
head of the instruction list, followed by the merge of the tails of the two
lists.

VERIFICATION OF class FILES 195

mergeStackMapAndCode([stackMap(Offset, Map) | RestMap],

[instruction(Offset, Parse) | RestCode],

[stackMap(Offset, Map),

 instruction(Offset, Parse) | RestMerge]) :-

mergeStackMapAndCode(RestMap, RestCode, RestMerge).

Otherwise, given a list of stack frames beginning with the type state for
the instruction at OffsetM, and a list of instructions beginning at
OffsetP, then, if OffsetP < OffsetM then the merged list consists of the
head of the instruction list, followed by the merge of the stack frame list
and the tail of the instruction list.

mergeStackMapAndCode([stackMap(OffsetM, Map) | RestMap],

 [instruction(OffsetP, Parse) | RestCode],

 [instruction(OffsetP, Parse) | RestMerge]) :-

OffsetP < OffsetM,

mergeStackMapAndCode([stackMap(OffsetM, Map) | RestMap],
RestCode, RestMerge).

Otherwise, the merge of the two lists is undefined.

Since the instruction list has monotonically increasing offsets, the merge
of the two lists is not defined unless:

• Every stackmap offset has a corresponding instruction offset.

• The stackmaps are in monotonically increasing order.

4.11.1.3.5 Exception Handling

An instruction satisfies its exception handlers if it satisfies every
exception handler that is applicable to the instruction.

instructionSatisfiesHandlers(Environment, Offset, ExceptionStackFrame)
:-

THE CLASS FILE FORMAT196

exceptionHandlers(Environment, Handlers),

sublist(isApplicableHandler(Offset), Handlers, ApplicableHandlers),

checklist(instructionSatisfiesHandler(Environment,
ExceptionStackFrame), ApplicableHandlers).

An exception handler is applicable to an instruction if the offset of the
instruction is greater or equal to the start of the handler’s range and less
than the end of the handler’s range.

isApplicableHandler(Offset, handler(Start, End, _Target, _ClassName)) :-

Offset >= Start,

Offset < End.

An instruction satisfies an exception handler if its incoming type state is
StackFrame, and the handler’s target (the initial instruction of the
handler code) is type safe assuming an incoming type state T. The type
state T is derived from StackFrame by replacing the operand stack
with a stack whose sole element is the handler’s exception class.

instructionSatisfiesHandler(Environment, StackFrame, Handler) :-

Handler = handler(_, _, Target, _),

currentClassLoader(Environment, CurrentLoader),

handlerExceptionClass(Handler, ExceptionClass, CurrentLoader),

/* The stack consists of just the exception. */

StackFrame = frame(Locals, _, Flags),

targetIsTypeSafe(Environment, frame(Locals, [ExceptionClass],
Flags), Target).

The exception class of a handler is Throwable if the handlers class
entry is 0, otherwise it is the class named in the handler.

handlerExceptionClass(handler(_, _, _, 0),

class(’java/lang/Throwable’, BL), _) :-

VERIFICATION OF class FILES 197

isBootstrapLoader(BL).

handlerExceptionClass(handler(_, _, _, Name), class(Name, L), L) :-

Name \= 0.

handlersAreLegal(Environment) :-

exceptionHandlers(Environment, Handlers),

checklist(handlerIsLegal(Environment), Handlers).

An exception handler is legal if its start (Start) is less than its end
(End), there exists an instruction whose offset is equal to Start, there
exists an instruction whose offset equals End and the handler’s
exception class is assignable to the class Throwable.

handlerIsLegal(Environment, Handler) :-

Handler = handler(Start, End, Target, _),

Start < End,

allInstructions(Environment, Instructions),

member(instruction(Start, _), Instructions),

offsetStackFrame(Environment, Target, _),

instructionsIncludeEnd(Instructions, End),

currentClassLoader(Environment, CurrentLoader),

handlerExceptionClass(Handler, ExceptionClass, CurrentLoader),

isBootstrapLoader(BL),

isAssignable(ExceptionClass, class(’java/lang/Throwable’, BL)).

instructionsIncludeEnd(Instructions, End) :-

member(instruction(End, _), Instructions).

instructionsIncludeEnd(Instructions, End) :-

member(endOfCode(End), Instructions).

THE CLASS FILE FORMAT198

4.11.1.4 Instructions

4.11.1.4.1 Isomorphic Instructions

Many bytecodes have type rules that are completely isomorphic to the
rules for other bytecodes. If a bytecode b1 is isomorphic to another
bytecode b2, then the type rule for b1 is the same as the type rule for b2.

instructionIsTypeSafe(Instruction, Environment, Offset, StackFrame,

NextStackFrame, ExceptionStackFrame) :-

instructionHasEquivalentTypeRule(Instruction,IsomorphicInstruction),
instructionIsTypeSafe(IsomorphicInstruction, Environment, Offset,

StackFrame, NextStackFrame, ExceptionStackFrame).

4.11.1.4.2 Manipulating the Operand Stack

This section defines the rules for legally manipulating the type state’s
operand stack. Manipulation of the operand stack is complicated by the
fact that some types occupy two entries on the stack. The predicates
given in this section take this into account, allowing the rest of the
specification to abstract from this issue.

canPop(frame(Locals, OperandStack, Flags), Types,

frame(Locals, PoppedOperandStack, Flags)) :-

popMatchingList(OperandStack, Types, PoppedOperandStack).

popMatchingList(OperandStack, [], OperandStack).

popMatchingList(OperandStack, [P | Rest], NewOperandStack) :-

popMatchingType(OperandStack, P, TempOperandStack,
_ActualType),

popMatchingList(TempOperandStack, Rest, NewOperandStack).

VERIFICATION OF class FILES 199

Pop an individual type off the stack. More precisely, if the logical top of
the stack is some subtype of the specified type, Type, then pop it. If a
type occupies two stack slots, the logical top of stack type is really the
type just below the top, and the top of stack is the unusable type top.

popMatchingType([ActualType | OperandStack], Type, OperandStack,
ActualType) :-

sizeOf(Type, 1),

isAssignable(ActualType, Type).

popMatchingType([top, ActualType | OperandStack], Type, OperandStack,
ActualType) :-

sizeOf(Type, 2),

isAssignable(ActualType, Type).

Push a logical type onto the stack. The exact behavior varies with the
size of the type. If the pushed type is of size 1, we just push it onto the
stack. If the pushed type is of size 2, we push it, and then push top.

pushOperandStack(OperandStack, ’void’, OperandStack).

pushOperandStack(OperandStack, Type, [Type | OperandStack]) :-

sizeOf(Type, 1).

pushOperandStack(OperandStack, Type, [top, Type | OperandStack]) :-

sizeOf(Type, 2).

The length of the operand stack must not exceed the declared maximum
stack length.

operandStackHasLegalLength(Environment, OperandStack) :-

length(OperandStack, Length),

maxOperandStackLength(Environment, MaxStack),

Length =< MaxStack.

THE CLASS FILE FORMAT200

Category 1 types occupy a single stack slot. Popping a logical type of
category 1, Type, off the stack is possible if the top of the stack is Type
and Type is not top (otherwise it could denote the upper half of a
category 2 type). The result is the incoming stack, with the top slot
popped off.

popCategory1([Type | Rest], Type, Rest) :-

Type \=top,

sizeOf(Type, 1).

Category 2 types occupy two stack slots. Popping a logical type of
category 2, Type, off the stack is possible if the top of the stack is type
top, and the slot directly below it is Type. The result is the incoming
stack, with the top 2 slots popped off.

popCategory2([top, Type | Rest], Type, Rest) :-

sizeOf(Type, 2).

canSafelyPush(Environment, InputOperandStack, Type,
OutputOperandStack) :-

pushOperandStack(InputOperandStack, Type,
OutputOperandStack),

operandStackHasLegalLength(Environment,
OutputOperandStack).

canSafelyPushList(Environment, InputOperandStack, Types,
OutputOperandStack) :-

canPushList(InputOperandStack, Types, OutputOperandStack),

operandStackHasLegalLength(Environment,
OutputOperandStack).

canPushList(InputOperandStack, [Type | Rest], OutputOperandStack) :-

pushOperandStack(InputOperandStack, Type,
InterimOperandStack),

VERIFICATION OF class FILES 201

canPushList(InterimOperandStack, Rest, OutputOperandStack).

canPushList(InputOperandStack, [], InputOperandStack).

4.11.1.4.3 Loads

All load instructions are variations on a common pattern, varying the type of the
value that the instruction loads.

Loading a value of type Type from local variable Index is type safe, if
the type of that local variable is ActualType, ActualType is assignable
to Type, and pushing ActualType onto the incoming operand stack is a
valid type transition that yields a new type state NextStackFrame.
After execution of the load instruction, the type state will be
NextStackFrame.

loadIsTypeSafe(Environment, Index, Type, StackFrame, NextStackFrame)
:-

StackFrame = frame(Locals, _OperandStack, _Flags),

nth0(Index, Locals, ActualType),

isAssignable(ActualType, Type),

validTypeTransition(Environment, [], ActualType, StackFrame,
NextStackFrame).

4.11.1.4.4 Stores

All store instructions are variations on a common pattern, varying the type of the
value that the instruction stores.

In general, a store instruction is type safe if the local variable it
references is of a type that is a supertype of Type, and the top of the
operand stack is of a subtype of Type, where Type is the type the
instruction is designed to store.

THE CLASS FILE FORMAT202

More precisely, the store is type safe if one can pop a type ActualType
that “matches” Type (i.e., is a subtype of Type) off the operand stack,
and then legally assign that type the local variable LIndex.

storeIsTypeSafe(_Environment, Index, Type, frame(Locals,
OperandStack, Flags),

frame(NextLocals, NextOperandStack, Flags)) :-

popMatchingType(OperandStack, Type, NextOperandStack,
ActualType),

modifyLocalVariable(Index, ActualType, Locals, NextLocals).

Given local variables Locals, modifying LIndex to have type Type
results in the local variable list NewLocals. The modifications are
somewhat involved, because some values (and their corresponding
types) occupy two local variables. Hence, modifying LN may require
modifying LN+1 (because the type will occupy both the N and N+1
slots) or LN-1 (because local N used to be the upper half of the two word
value/type starting at local N-1, and so local N-1 must be invalidated),
or both. This is described further below. We start at L0 and count up.

modifyLocalVariable(Index, Type, Locals, NewLocals) :-

modifyLocalVariable(0, Index, Type, Locals, NewLocals).

Given the suffix of the local variable list starting at index I, LocalsRest,
modifying local variable Index to have type Type results in the local
variable list suffix NewLocalsRest.

If I < Index-1, just copy the input to the output and recurse forward. If I
= Index-1, the type of local I may change. This can occur if LI has a type
of size 2. Once we set LI+1 to the new type (and the corresponding
value), the type/value of LI will be invalidated, as its upper half will be
trashed. Then we recurse forward.

When we find the variable, and it only occupies one word, we change it
to Type and we’re done.

When we find the variable, and it occupies two words, we change its
type to Type and the next word to top.

VERIFICATION OF class FILES 203

modifyLocalVariable(I, Index, Type, [Locals1 | LocalsRest],

 [Locals1 | NextLocalsRest]) :-

I < Index - 1,

I1 is I + 1,

modifyLocalVariable(I1, Index, Type, LocalsRest, NextLocalsRest).

modifyLocalVariable(I, Index, Type, [Locals1 | LocalsRest],

 [NextLocals1 | NextLocalsRest]) :-

I =:= Index - 1,

modifyPreIndexVariable(Locals1, NextLocals1),

modifyLocalVariable(Index, Index, Type, LocalsRest,
NextLocalsRest).

modifyLocalVariable(Index, Index, Type, [_ | LocalsRest],

 [Type | LocalsRest]) :-

sizeOf(Type, 1).

modifyLocalVariable(Index, Index, Type, [_, _ | LocalsRest],

 [Type, top | LocalsRest]) :-

sizeOf(Type, 2).

We refer to a local whose index immediately precedes a local whose
type will be modified as a pre-index variable. The future type of a pre-
index variable of type InputType is Result. If the type, Value, of the pre-
index local is of size 1, it doesn’t change. If the type of the pre-index
local, Value, is 2, we need to mark the lower half of its two word value
as unusable, by setting its type to top.

modifyPreIndexVariable(Type, Type) :- sizeOf(Type, 1).

modifyPreIndexVariable(Type, top) :- sizeOf(Type, 2).

Given a list of types, this clause produces a list where every type of size
2 has been substituted by two entries: one for itself, and one top entry.

THE CLASS FILE FORMAT204

The result then corresponds to the representation of the list as 32 bit
words in the Java virtual machine.

expandTypeList([], []).

expandTypeList([Item | List], [Item | Result]) :-

sizeOf(Item, 1),

expandTypeList(List, Result).

expandTypeList([Item | List], [Item, top | Result]) :-

sizeOf(Item, 2),

expandTypeList(List, Result).

4.11.1.4.5 List of all Instructions

In general, the type rule for an instruction is given relative to an environment
Environment that defines the class and method in which the instruction occurs,
and the offset Offset within the method at which the instruction occurs. The rule
states that if the incoming type state StackFrame fulfills certain requirements,
then

• The instruction is type safe.

• It is provable that the type state after the instruction completes normally has a
particular form given by NextStackFrame, and that the type state after the
instruction completes abruptly is given by ExceptionStackFrame.

The natural language description of the rule is intended to be readable, intuitive
and concise. As such, the description avoids repeating all the contextual
assumptions given above. In particular:

• We do not explicitly mention the environment.

• When we speak of the operand stack or local variables in the following, we are
referring to the operand stack and local variable components of a type state: either the
incoming type state or the outgoing one.

• The type state after the instruction completes abruptly is almost always identical to
the incoming type state. We only discuss the type state after the instruction completes
abruptly when that is not the case.

• We speak of popping and pushing types onto the operand stack. We do not explicitly
discuss issues of stack underflow or overflow, but assume that these operations can be

VERIFICATION OF class FILES 205

completed successfully. The formal rules for operand stack manipulation ensure that
the necessary checks are made.

• Similarly, the text discusses only the manipulation of logical types. In practice, some
types take more than one word. We abstract from these representation details in our
discussion, but the logical rules that manipulate data do not.

Any ambiguities can be resolved by referring to the formal Prolog rules.

aaload:

An aaload instruction is type safe iff one can validly replace types
matching int and an array type with component type
ComponentType where ComponentType is a subtype of Object,
with ComponentType yielding the outgoing type state.

instructionIsTypeSafe(aaload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

nth1OperandStackIs(2, StackFrame, ArrayType),

arrayComponentType(ArrayType, ComponentType),

isBootstrapLoader(BL),

validTypeTransition(Environment,

 [int, arrayOf(class(’java/lang/Object’, BL))],

 ComponentType,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The component type of an array of X is X.

arrayComponentType(arrayOf(X), X).

We define the component type of null to be null.

arrayComponentType(null, null).

aastore:

THE CLASS FILE FORMAT206

An aastore instruction is type safe iff one can validly pop types
matching Object, int, and an array of Object off the incoming
operand stack yielding the outgoing type state.

instructionIsTypeSafe(aastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

isBootstrapLoader(BL),

canPop(StackFrame, [class(’java/lang/Object’, BL), int,

arrayOf(class(’java/lang/Object’, BL))], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

aconst_null:

An aconst_null instruction is type safe if one can validly push the
type null onto the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(aconst_null, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [], null, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

aload:

An aload instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a load instruction with operand
Index and type reference is type safe and yields an outgoing type
state NextStackFrame.

instructionIsTypeSafe(aload(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

loadIsTypeSafe(Environment, Index, reference, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

VERIFICATION OF class FILES 207

aload_<n>:

The instructions aload_<n>, for , are typesafe iff the
equivalent aload instruction is type safe.

instructionHasEquivalentTypeRule(aload_0, aload(0)).

instructionHasEquivalentTypeRule(aload_1, aload(1)).

instructionHasEquivalentTypeRule(aload_2, aload(2)).

instructionHasEquivalentTypeRule(aload_3, aload(3)).

anewarray:

An anewarray instruction with operand CP is type safe iff CP refers
to a constant pool entry denoting either a class type or an array type, and
one can legally replace a type matching int on the incoming operand
stack with an array with component type CP yielding the outgoing type
state.

instructionIsTypeSafe(anewarray(CP), Environment, _Offset,
StackFrame, NextStackFrame, ExceptionStackFrame) :-

(CP = class(_, _) ; CP = arrayOf(_)),

validTypeTransition(Environment, [int], arrayOf(CP),

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

areturn:

An areturn instruction is type safe iff the enclosing method has a
declared return type, ReturnType, that is a reference type, and one can
validly pop a type matching ReturnType off the incoming operand
stack.

instructionIsTypeSafe(areturn, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, ReturnType),

isAssignable(ReturnType, reference),

0 n 3≤ ≤

THE CLASS FILE FORMAT208

canPop(StackFrame, [ReturnType], _PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

arraylength:

An arraylength instruction is type safe iff one can validly replace
an array type on the incoming operand stack with the type int yielding
the outgoing type state.

instructionIsTypeSafe(arraylength, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

nth1OperandStackIs(1, StackFrame, ArrayType),

arrayComponentType(ArrayType, _), % ensure that it is an Array

validTypeTransition(Environment, [top], int, StackFrame,
NextStackFrame),

 exceptionStackFrame(StackFrame,
ExceptionStackFrame).

astore:

An astore instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a store instruction with
operand Index and type reference is type safe and yields an
outgoing type state NextStackFrame.

instructionIsTypeSafe(astore(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

storeIsTypeSafe(Environment, Index, reference, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

astore_<n>:

The instructions astore_<n>, for , are typesafe iff the
equivalent astore instruction is type safe.

0 n 3≤ ≤

VERIFICATION OF class FILES 209

instructionHasEquivalentTypeRule(astore_0, astore(0)).

instructionHasEquivalentTypeRule(astore_1, astore(1)).

instructionHasEquivalentTypeRule(astore_2, astore(2)).

instructionHasEquivalentTypeRule(astore_3, astore(3)).

athrow:

An athrow instruction is type safe iff the top of the operand stack
matches Throwable.

instructionIsTypeSafe(athrow, _Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

isBootstrapLoader(BL),

canPop(StackFrame, [class(’java/lang/Throwable’, BL)],
_PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

baload:

A baload instruction is type safe iff one can validly replace types
matching int and a small array type on the incoming operand stack
with int yielding the outgoing type state.

instructionIsTypeSafe(baload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

nth1OperandStackIs(2, StackFrame, Array),

 isSmallArray(Array),

validTypeTransition(Environment, [int, top], int,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

An array type is a small array type if it is an array of byte, an array of
boolean, or a subtype thereof (null).

THE CLASS FILE FORMAT210

isSmallArray(arrayOf(byte)).

isSmallArray(arrayOf(boolean)).

isSmallArray(null).

bastore:

A bastore instruction is type safe iff one can validly pop types
matching int, int and a small array type off the incoming operand
stack yielding the outgoing type state.

instructionIsTypeSafe(bastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

nth1OperandStackIs(3, StackFrame, Array),

isSmallArray(Array),

canPop(StackFrame, [int, int, top], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

bipush:

A bipush instruction is type safe iff the equivalent sipush
instruction is type safe

instructionHasEquivalentTypeRule(bipush(Value), sipush(Value)).

caload:

A caload instruction is type safe iff one can validly replace types
matching int and array of char on the incoming operand stack with
int yielding the outgoing type state.

instructionIsTypeSafe(caload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(char)], int,

VERIFICATION OF class FILES 211

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

castore:

A castore instruction is type safe iff one can validly pop types
matching int, int and array of char off the incoming operand stack
yielding the outgoing type state.

instructionIsTypeSafe(castore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [int, int, arrayOf(char)], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

checkcast:

A checkcast instruction with operand CP is type safe iff CP refers
to a constant pool entry denoting either a class or an array, and one can
validly replace the type Object on top of the incoming operand stack
with the type denoted by CP yielding the outgoing type state.

instructionIsTypeSafe(checkcast(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

(CP = class(_, _) ; CP = arrayOf(_)),

isBootstrapLoader(BL),

validTypeTransition(Environment, [class(’java/lang/Object’, BL)], CP,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

d2f:

A d2f instruction is type safe if one can validly pop double off the
incoming operand stack and replace it with float, yielding the
outgoing type state.

instructionIsTypeSafe(d2f, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

THE CLASS FILE FORMAT212

validTypeTransition(Environment, [double], float,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

d2i:

A d2i instruction is type safe if one can validly pop double off the
incoming operand stack and replace it with int, yielding the outgoing
type state.

instructionIsTypeSafe(d2i, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [double], int,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

d2l:

A d2l instruction is type safe if one can validly pop double off the
incoming operand stack and replace it with long, yielding the outgoing
type state.

instructionIsTypeSafe(d2l, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [double], long,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dadd:

A dadd instruction is type safe iff one can validly replace types
matching double and double on the incoming operand stack with
double yielding the outgoing type state.

VERIFICATION OF class FILES 213

instructionIsTypeSafe(dadd, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

 validTypeTransition(Environment, [double, double], double,

 StackFrame, NextStackFrame),

 exceptionStackFrame(StackFrame, ExceptionStackFrame).

daload:

A daload instruction is type safe iff one can validly replace types
matching int and array of double on the incoming operand stack
with double yielding the outgoing type state.

instructionIsTypeSafe(daload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(double)], double,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dastore:

A dastore instruction is type safe iff one can validly pop types
matching double, int and array of double off the incoming
operand stack yielding the outgoing type state.

instructionIsTypeSafe(dastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [double, int, arrayOf(double)],
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dcmp<op>:

A dcmpg instruction is type safe iff one can validly replace types
matching double and double on the incoming operand stack with
int yielding the outgoing type state.

THE CLASS FILE FORMAT214

instructionIsTypeSafe(dcmpg, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [double, double], int,

 StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dcmpl instruction is type safe iff the equivalent dcmpg instruction
is type safe.

instructionHasEquivalentTypeRule(dcmpl, dcmpg).

dconst_<d>:

A dconst_0 instruction is type safe if one can validly push the type
double onto the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(dconst_0, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [], double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dconst_1 instruction is type safe iff the equivalent dconst_0
instruction is type safe.

instructionHasEquivalentTypeRule(dconst_1, dconst_0).

ddiv:

A ddiv instruction is type safe iff the equivalent dadd instruction is
type safe.

instructionHasEquivalentTypeRule(ddiv, dadd).

VERIFICATION OF class FILES 215

dload:

A dload instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a load instruction with operand
Index and type double is type safe and yields an outgoing type state
NextStackFrame.

instructionIsTypeSafe(dload(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

loadIsTypeSafe(Environment, Index, double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dload_<n>:

The instructions dload_<n>, for , are typesafe iff the
equivalent dload instruction is type safe.

instructionHasEquivalentTypeRule(dload_0, dload(0)).

instructionHasEquivalentTypeRule(dload_1, dload(1)).

instructionHasEquivalentTypeRule(dload_2, dload(2)).

instructionHasEquivalentTypeRule(dload_3, dload(3)).

dmul:

A dmul instruction is type safe iff the equivalent dadd instruction is
type safe.

instructionHasEquivalentTypeRule(dmul, dadd).

dneg:

0 n 3≤ ≤

THE CLASS FILE FORMAT216

A dneg instruction is type safe iff there is a type matching double on
the incoming operand stack. The dneg instruction does not alter the
type state.

instructionIsTypeSafe(dneg, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [double], double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

drem:

A drem instruction is type safe iff the equivalent dadd instruction is
type safe.

instructionHasEquivalentTypeRule(drem, dadd).

dreturn:

A dreturn instruction is type safe if the enclosing method has a
declared return type of double, and one can validly pop a type
matching double off the incoming operand stack.

instructionIsTypeSafe(dreturn, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, double),

canPop(StackFrame, [double], _PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dstore:

A dstore instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a store instruction with

VERIFICATION OF class FILES 217

operand Index and type double is type safe and yields an outgoing
type state NextStackFrame.

instructionIsTypeSafe(dstore(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

storeIsTypeSafe(Environment, Index, double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dstore_<n>:

The instructions dstore_<n>, for , are type safe iff the
equivalent dstore instruction is type safe.

instructionHasEquivalentTypeRule(dstore_0, dstore(0)).

instructionHasEquivalentTypeRule(dstore_1, dstore(1)).

instructionHasEquivalentTypeRule(dstore_2, dstore(2)).

instructionHasEquivalentTypeRule(dstore_3, dstore(3)).

dsub:

A dsub instruction is type safe iff the equivalent dadd instruction is
type safe.

instructionHasEquivalentTypeRule(dsub, dadd).

dup:

A dup instruction is type safe iff one can validly replace a category 1
type, Type, with the types Type, Type, yielding the outgoing type state.

instructionIsTypeSafe(dup, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

0 n 3≤ ≤

THE CLASS FILE FORMAT218

popCategory1(InputOperandStack, Type, _),

canSafelyPush(Environment, InputOperandStack, Type,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dup_x1:

A dup_x1 instruction is type safe iff one can validly replace two
category 1 types, Type1, and Type2, on the incoming operand stack
with the types Type1, Type2, Type1, yielding the outgoing type state.

instructionIsTypeSafe(dup_x1, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

popCategory1(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

dup_x2:

A dup_x2 instruction is type safe iff it is a type safe form of the
dup_x2 instruction.

instructionIsTypeSafe(dup_x2, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

dup_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

VERIFICATION OF class FILES 219

A dup_x2 instruction is a type safe form of the dup_x2 instruction iff
it is a type safe form 1 dup_x2 instruction or a type safe form 2
dup_x2 instruction.

dup_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup_x2Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

dup_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup_x2Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

A dup_x2 instruction is a type safe form 1 dup_x2 instruction iff one
can validly replace three category 1 types, Type1, Type2, Type3 on the
incoming operand stack with the types Type1, Type2, Type3, Type1,
yielding the outgoing type state.

dup_x2Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory1(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Stack2),

popCategory1(Stack2, Type3, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type3, Type2,
Type1], OutputOperandStack).

A dup_x2 instruction is a type safe form 2 dup_x2 instruction iff one
can validly replace a category 1 type, Type1, and a category 2 type,
Type2, on the incoming operand stack with the types Type1, Type2,
Type1, yielding the outgoing type state.

dup_x2Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory1(InputOperandStack, Type1, Stack1),

THE CLASS FILE FORMAT220

popCategory2(Stack1, Type2, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],
OutputOperandStack).

dup2:

A dup2 instruction is type safe iff it is a type safe form of the dup2
instruction.

instructionIsTypeSafe(dup2, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

dup2SomeFormIsTypeSafe(Environment,InputOperandStack,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2 instruction is a type safe form of the dup2 instruction iff it is a
type safe form 1 dup2 instruction or a type safe form 2 dup2
instruction.

dup2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2Form1IsTypeSafe(Environment,InputOperandStack,
OutputOperandStack).

dup2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2Form2IsTypeSafe(Environment,InputOperandStack,
OutputOperandStack).

A dup2 instruction is a type safe form 1 dup2 instruction iff one can
validly replace two category 1 types, Type1 and Type2 on the incoming
operand stack with the types Type1, Type2, Type1, Type2, yielding
the outgoing type state.

VERIFICATION OF class FILES 221

dup2Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack):-

popCategory1(InputOperandStack, Type1, TempStack),

popCategory1(TempStack, Type2, _),

canSafelyPushList(Environment, InputOperandStack,

[Type1, Type2], OutputOperandStack).

A dup2 instruction is a type safe form 2 dup2 instruction iff one can
validly replace a category 2 type, Type on the incoming operand stack
with the types Type, Type, yielding the outgoing type state.

dup2Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack):-

popCategory2(InputOperandStack, Type, _),

canSafelyPush(Environment, InputOperandStack, Type,
OutputOperandStack).

dup2_x1:

A dup2_x1 instruction is type safe iff it is a type safe form of the
dup2_x1 instruction.

instructionIsTypeSafe(dup2_x1, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

dup2_x1SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2_x1 instruction is a type safe form of the dup2_x1 instruction
iff it is a type safe form 1 dup2_x1 instruction or a type safe form 2
dup_x2 instruction.

THE CLASS FILE FORMAT222

dup2_x1SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2_x1Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

dup2_x1SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2_x1Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

A dup2_x1 instruction is a type safe form 1 dup2_x1 instruction iff
one can validly replace three category 1 types, Type1, Type2, Type3,
on the incoming operand stack with the types Type1, Type2, Type3,
Type1, Type2, yielding the outgoing type state.

dup2_x1Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory1(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Stack2),

popCategory1(Stack2, Type3, Rest),

canSafelyPushList(Environment, Rest,

 [Type2, Type1, Type3, Type2, Type1],
OutputOperandStack).

A dup2_x1 instruction is a type safe form 2 dup2_x1 instruction iff
one can validly replace a category 2 type, Type1, and a category 1 type,
Type2, on the incoming operand stack with the types Type1, Type2,
Type1, yielding the outgoing type state.

dup2_x1Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory2(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],
OutputOperandStack).

VERIFICATION OF class FILES 223

dup2_x2:

A dup2_x2 instruction is type safe iff it is a type safe form of the
dup2_x2 instruction.

instructionIsTypeSafe(dup2_x2, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

dup2_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2_x2 instruction is a type safe form of the dup2_x2 instruction
iff one of the following holds:

• it is a type safe form 1 dup2_x2 instruction.

• it is a type safe form 2 dup2_x2 instruction.

• it is a type safe form 3 dup2_x2 instruction.

• it is a type safe form 4 dup2_x2 instruction.

dup2_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2_x2Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

dup2_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2_x2Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

dup2_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

dup2_x2Form3IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

dup2_x2SomeFormIsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

THE CLASS FILE FORMAT224

dup2_x2Form4IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack).

A dup2_x2 instruction is a type safe form 1 dup2_x2 instruction iff
one can validly replace four category 1 types, Type1, Type2, Type3,
Type4, on the incoming operand stack with the types Type1, Type2,
Type3, Type4, Type1, Type2, yielding the outgoing type state.

dup2_x2Form1IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory1(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Stack2),

popCategory1(Stack2, Type3, Stack3),

popCategory1(Stack3, Type4, Rest),

canSafelyPushList(Environment, Rest,

 [Type2, Type1, Type4, Type3, Type2, Type1],
OutputOperandStack).

A dup2_x2 instruction is a type safe form 2 dup2_x2 instruction iff
one can validly replace a category 2 type, Type1, and two category 1
types, Type2, Type3, on the incoming operand stack with the types
Type1, Type2, Type3, Type1, yielding the outgoing type state.

dup2_x2Form2IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory2(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Stack2),

popCategory1(Stack2, Type3, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type3, Type2,
Type1], OutputOperandStack).

A dup2_x2 instruction is a type safe form 3 dup2_x2 instruction iff
one can validly replace two category 1 types, Type1, Type2, and a

VERIFICATION OF class FILES 225

category 2 type, Type3, on the incoming operand stack with the types
Type1, Type2, Type3, Type1, Type2, yielding the outgoing type state.

dup2_x2Form3IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory1(InputOperandStack, Type1, Stack1),

popCategory1(Stack1, Type2, Stack2),

popCategory2(Stack2, Type3, Rest),

canSafelyPushList(Environment, Rest, [Type2, Type1, Type3,
Type2, Type1], OutputOperandStack).

A dup2_x2 instruction is a type safe form 4 dup2_x2 instruction iff
one can validly replace two category 2 types, Type1, Type2, on the
incoming operand stack with the types Type1, Type2, Type1, yielding
the outgoing type state.

dup2_x2Form4IsTypeSafe(Environment, InputOperandStack,
OutputOperandStack) :-

popCategory2(InputOperandStack, Type1, Stack1),

popCategory2(Stack1, Type2, Rest),

canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],
OutputOperandStack).

f2d:

An f2d instruction is type safe if one can validly pop float off the
incoming operand stack and replace it with double, yielding the
outgoing type state.

instructionIsTypeSafe(f2d, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float], double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

THE CLASS FILE FORMAT226

f2i:

An f2i instruction is type safe if one can validly pop float off the
incoming operand stack and replace it with int, yielding the outgoing
type state.

instructionIsTypeSafe(f2i, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

f2l:

An f2l instruction is type safe if one can validly pop float off the
incoming operand stack and replace it with long, yielding the outgoing
type state.

instructionIsTypeSafe(f2l, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fadd:

An fadd instruction is type safe iff one can validly replace types
matching float and float on the incoming operand stack with
float yielding the outgoing type state.

instructionIsTypeSafe(fadd, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float, float], float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

VERIFICATION OF class FILES 227

faload:

An faload instruction is type safe iff one can validly replace types
matching int and array of float on the incoming operand stack with
float yielding the outgoing type state.

instructionIsTypeSafe(faload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(float)], float,
StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fastore:

An fastore instruction is type safe iff one can validly pop types
matching float, int and array of float off the incoming operand
stack yielding the outgoing type state.

instructionIsTypeSafe(fastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [float, int, arrayOf(float)], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fcmp<op>:

An fcmpg instruction is type safe iff one can validly replace types
matching float and float on the incoming operand stack with int
yielding the outgoing type state.

instructionIsTypeSafe(fcmpg, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float, float], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

THE CLASS FILE FORMAT228

An fcmpl instruction is type safe iff the equivalent fcmpg instruction
is type safe.

instructionHasEquivalentTypeRule(fcmpl, fcmpg).

fconst_<f>:

An fconst_0 instruction is type safe if one can validly push the type
float onto the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(fconst_0, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [], float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for the other variants of fconst are equivalent:

instructionHasEquivalentTypeRule(fconst_1, fconst_0).

instructionHasEquivalentTypeRule(fconst_2, fconst_0).

fdiv:

An fdiv instruction is type safe iff the equivalent fadd instruction is
type safe.

instructionHasEquivalentTypeRule(fdiv, fadd).

fload:

An fload instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a load instruction with operand
Index and type float is type safe and yields an outgoing type state
NextStackFrame.

VERIFICATION OF class FILES 229

instructionIsTypeSafe(fload(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

loadIsTypeSafe(Environment, Index, float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fload_<n>:

The instructions fload_<n>, for , are typesafe iff the
equivalent fload instruction is type safe.

instructionHasEquivalentTypeRule(fload_0, fload(0)).

instructionHasEquivalentTypeRule(fload_1, fload(1)).

instructionHasEquivalentTypeRule(fload_2, fload(2)).

instructionHasEquivalentTypeRule(fload_3, fload(3)).

fmul:

An fmul instruction is type safe iff the equivalent fadd instruction is
type safe.

instructionHasEquivalentTypeRule(fmul, fadd).

fneg:

An fneg instruction is type safe iff there is a type matching float on
the incoming operand stack. The fneg instruction does not alter the
type state.

instructionIsTypeSafe(fneg, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [float], float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

0 n 3≤ ≤

THE CLASS FILE FORMAT230

frem:

An frem instruction is type safe iff the equivalent fadd instruction is
type safe.

instructionHasEquivalentTypeRule(frem, fadd).

freturn:

An freturn instruction is type safe if the enclosing method has a
declared return type of float, and one can validly pop a type matching
float off the incoming operand stack.

instructionIsTypeSafe(freturn, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, float),

canPop(StackFrame, [float], _PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fstore:

An fstore instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a store instruction with
operand Index and type float is type safe and yields an outgoing type
state NextStackFrame.

instructionIsTypeSafe(fstore(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

storeIsTypeSafe(Environment, Index, float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

fstore_<n>:

VERIFICATION OF class FILES 231

The instructions fstore_<n>, for , are typesafe iff the
equivalent fstore instruction is type safe.

instructionHasEquivalentTypeRule(fstore_0, fstore(0)).

instructionHasEquivalentTypeRule(fstore_1, fstore(1)).

instructionHasEquivalentTypeRule(fstore_2, fstore(2)).

instructionHasEquivalentTypeRule(fstore_3, fstore(3)).

fsub:

An fsub instruction is type safe iff the equivalent fadd instruction is
type safe.

instructionHasEquivalentTypeRule(fsub, fadd).

getfield:

A getfield instruction with operand CP is type safe iff CP refers to
a constant pool entry denoting a field whose declared type is FieldType,
declared in a class FieldClass, and one can validly replace a type
matching FieldClass with type FieldType on the incoming operand
stack yielding the outgoing type state. FieldClass must not be an array
type. Protected fields are subject to additional checks.

instructionIsTypeSafe(getfield(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = field(FieldClass, FieldName, FieldDescriptor),

parseFieldDescriptor(FieldDescriptor, FieldType),

passesProtectedCheck(Environment, FieldClass, FieldName,
FieldDescriptor, StackFrame),

validTypeTransition(Environment, [class(FieldClass)], FieldType,

StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

0 n 3≤ ≤

THE CLASS FILE FORMAT232

The protected check applies only to members of superclasses of the
current class. Other cases will be caught by the access checking done at
resolution time. If the name of a class is not the name of any superclass,
it cannot be a superclass, and so it can safely be ignored.

passesProtectedCheck(Environment, MemberClassName,
MemberName, MemberDescriptor, StackFrame) :-

thisClass(Environment, class(CurrentClassName, CurrentLoader)),

superclassChain(CurrentClassName, CurrentLoader, Chain),

notMember(class(MemberClassName, _), Chain).

Using a superclass member that is not protected is trivially correct.

If the MemberClassName is the same as the name of a superclass, the
class being resolved may indeed be a superclass. In this case, if no
superclass named MemberClassName in a different runtime package
has a protected member named MemberName with descriptor
MemberDescriptor, the the protected check need not apply. This is
because the actual class being resolved will either be one of these
superclasses, in which case we know that it is either in the same runtime
package, and the access is legal, or the member in question is not
protected and the check does not apply; or it will be a subclass, in which
case the check would succeed anyway; or it will be some other class in
the same run time package ,in which case the access is legal and the
check need not take place; or the verifier need not flag this as a problem,
since it will be caught anyway because resolution will per force fail.

passesProtectedCheck(Environment, MemberClassName,
MemberName, MemberDescriptor, StackFrame) :-

thisClass(Environment, class(CurrentClassName, CurrentLoader)),

superclassChain(CurrentClassName, CurrentLoader, Chain),

member(class(MemberClassName, _), Chain),

classesInOtherPkgWithProtectedMember(

class(CurrentClassName, CurrentLoader), MemberName,

MemberDescriptor, MemberClassName, Chain, []).

VERIFICATION OF class FILES 233

If there does exist a protected superclass member in a different run time
package, then load MemberClassName; if the member in question is not
protected, the check does not apply.

passesProtectedCheck(Environment, MemberClassName,
MemberName, MemberDescriptor, frame(_Locals, [Target | Rest],
_Flags)) :-

thisClass(Environment, class(CurrentClassName, CurrentLoader)),

superclassChain(CurrentClassName, CurrentLoader, Chain),

member(class(MemberClassName, _), Chain),

classesInOtherPkgWIthProtectedMember(

class(CurrentClassName, CurrentLoader), MemberName,

MemberDescriptor, MemberClassName, Chain, List),

List /= [],

loadedClass(MemberClassName, CurrentLoader,

ReferencedClass),

isNotProtected(ReferencedClass, MemberName,

MemberDescriptor).

Otherwise, use of a member of an object of type Target requires that
Target be assignable to the type of the current class.

passesProtectedCheck(Environment, MemberClassName,
MemberName, MemberDescriptor, frame(_Locals, [Target | Rest],
_Flags)) :-

thisClass(Environment, class(CurrentClassName, CurrentLoader)),

superclassChain(CurrentClassName, CurrentLoader, Chain),

member(class(MemberClassName, _), Chain),

classesInOtherPkgWIthProtectedMember(

class(CurrentClassName, CurrentLoader),

THE CLASS FILE FORMAT234

MemberName, MemberDescriptor, MemberClassName,

Chain, List),

List /= [],

loadedClass(MemberClassName, CurrentLoader,

ReferencedClass),

isProtected(ReferencedClass, MemberName, MemberDescriptor),

isAssignable(Target, class(CurrentClassName, CurrentLoader)).

superclassChain(ClassName, L, [class(SuperclassName, Ls)| Rest]) :-

loadedClass(ClassName, L, Class),

classSuperclassName(Class, SuperclassName),

classDefiningLoader(Class, Ls),

superclassChain(SuperclassName, Ls, Rest).

superclassChain(‘java/lang/Object’, L, []) :-

loadedClass(‘java/lang/Object’, L, Class),

classDefiningLoader(Class, BL),

isBootstrapLoader(BL).

The predicate classesInOtherPkgWIthProtectedMember(Class,
MemberName, MemberDescriptor, MemberClassName, Chain,
List) is true if List is the set of classes in Chain with name
MemberClassName that are in a different runtime package then
Class which have a protected member named MemberName with
descriptor MemberDescriptor

classesInOtherPkgWIthProtectedMember(_, _, _, _, [], []).

classesInOtherPkgWIthProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, [class(MemberClassName, L) |
Tail], [class(MemberClassName, L) | T]) :-

differentRuntimePackage(Class, class(MemberClassName, L)),

loadedClass(MemberClassName, L, Super),

VERIFICATION OF class FILES 235

isProtected(Super, MemberName, MemberDescriptor),

classesInOtherPkgWIthProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, Tail, T).

classesInOtherPkgWIthProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, [class(MemberClassName, L) |
Tail], T) :-

differentRuntimePackage(Class, class(MemberClassName, L)),

loadedClass(MemberClassName, L, Super),

isNotProtected(Super, MemberName, MemberDescriptor).

classesInOtherPkgWIthProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, Tail, T).

classesInOtherPkgWIthProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, [class(MemberClassName, L) |
Tail], T] :-

sameRuntimePackage(Class, class(MemberClassName, L)),

classesInOtherPkgWIthProtectedMember(Class,
MemberName, MemberDescriptor, MemberClassName, Tail, T).

getstatic:

A getstatic instruction with operand CP is type safe iff CP refers
to a constant pool entry denoting a field whose declared type is
FieldType, and one can validly push FieldType on the incoming
operand stack yielding the outgoing type state.

instructionIsTypeSafe(getstatic(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = field(_FieldClass, _FieldName, FieldDescriptor),

THE CLASS FILE FORMAT236

parseFieldDescriptor(FieldDescriptor, FieldType),

validTypeTransition(Environment, [], FieldType, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

goto:

A goto instruction is type safe iff its target operand is a valid branch
target.

instructionIsTypeSafe(goto(Target), Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

targetIsTypeSafe(Environment, StackFrame, Target),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

i2b:

An i2b instruction is type safe iff the equivalent ineg instruction is
type safe.

instructionHasEquivalentTypeRule(i2b, ineg).

i2c:

An i2c instruction is type safe iff the equivalent ineg instruction is
type safe.

instructionHasEquivalentTypeRule(i2c, ineg).

i2d:

An i2d instruction is type safe if one can validly pop int off the
incoming operand stack and replace it with double, yielding the
outgoing type state.

VERIFICATION OF class FILES 237

instructionIsTypeSafe(i2d, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int], double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

i2f:

An i2f instruction is type safe if one can validly pop int off the
incoming operand stack and replace it with float, yielding the
outgoing type state.

instructionIsTypeSafe(i2f, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int], float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

i2l:

An i2l instruction is type safe if one can validly pop int off the
incoming operand stack and replace it with long, yielding the outgoing
type state.

instructionIsTypeSafe(i2l, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

i2s:

An i2s instruction is type safe iff the equivalent ineg instruction is
type safe.

instructionHasEquivalentTypeRule(i2s, ineg).

THE CLASS FILE FORMAT238

iadd:

An iadd instruction is type safe iff one can validly replace types
matching int and int on the incoming operand stack with int
yielding the outgoing type state.

instructionIsTypeSafe(iadd, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, int], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

iaload:

An iaload instruction is type safe iff one can validly replace types
matching int and array of int on the incoming operand stack with
int yielding the outgoing type state.

instructionIsTypeSafe(iaload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(int)], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

iand:

An iand instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(iand, iadd).

iastore:

An iastore instruction is type safe iff one can validly pop types
matching int, int and array of int off the incoming operand stack
yielding the outgoing type state.

VERIFICATION OF class FILES 239

instructionIsTypeSafe(iastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [int, int, arrayOf(int)], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

if_acmp<cond>:

An if_acmpeq instruction is type safe iff one can validly pop types
matching reference and reference on the incoming operand
stack yielding the outgoing type state NextStackFrame, and the
operand of the instruction, Target, is a valid branch target assuming an
incoming type state of NextStackFrame.

instructionIsTypeSafe(if_acmpeq(Target), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [reference, reference], NextStackFrame),

targetIsTypeSafe(Environment, NextStackFrame, Target),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rule for if_acmp_ne is identical.

instructionHasEquivalentTypeRule(if_acmpne(Target),
if_acmpeq(Target)).

if_icmp<cond>:

An if_icmpeq instruction is type safe iff one can validly pop types
matching int and int on the incoming operand stack yielding the
outgoing type state NextStackFrame, and the operand of the
instruction, Target, is a valid branch target assuming an incoming type
state of NextStackFrame.

instructionIsTypeSafe(if_icmpeq(Target), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [int, int], NextStackFrame),

THE CLASS FILE FORMAT240

targetIsTypeSafe(Environment, NextStackFrame, Target),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for all other variants of the if_icmp instruction are identical

instructionHasEquivalentTypeRule(if_icmpge(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmpgt(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmple(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmplt(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmpne(Target), if_icmpeq(Target)).

if_<cond>:

An if_eq instruction is type safe iff one can validly pop a type
matching int off the incoming operand stack yielding the outgoing
type state NextStackFrame, and the operand of the instruction, Target,
is a valid branch target assuming an incoming type state of
NextStackFrame.

instructionIsTypeSafe(ifeq(Target), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [int], NextStackFrame),

targetIsTypeSafe(Environment, NextStackFrame, Target),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for all other variations of the if<cond> instruction are
identical

instructionHasEquivalentTypeRule(ifge(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifgt(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifle(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(iflt(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifne(Target), ifeq(Target)).

VERIFICATION OF class FILES 241

ifnonnull:

An ifnonnull instruction is type safe iff one can validly pop a type
matching reference off the incoming operand stack yielding the
outgoing type state NextStackFrame, and the operand of the
instruction, Target, is a valid branch target assuming an incoming type
state of NextStackFrame.

instructionIsTypeSafe(ifnonnull(Target), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [reference], NextStackFrame),

targetIsTypeSafe(Environment, NextStackFrame, Target),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ifnull:

An ifnull instruction is type safe iff the equivalent ifnonnull
instruction is type safe.

instructionHasEquivalentTypeRule(ifnull(Target), ifnonnull(Target)).

iinc:

An iinc instruction with first operand Index is type safe iff LIndex has
type int. The iinc instruction does not change the type state.

instructionIsTypeSafe(iinc(Index, _Value), _Environment, _Offset,
StackFrame,

 StackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, _OperandStack, _Flags),

nth0(Index, Locals, int),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

iload:

THE CLASS FILE FORMAT242

An iload instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a load instruction with operand
Index and type int is type safe and yields an outgoing type state
NextStackFrame.

instructionIsTypeSafe(iload(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

loadIsTypeSafe(Environment, Index, int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

iload_<n>:

The instructions iload_<n>, for , are typesafe iff the
equivalent iload instruction is type safe.

instructionHasEquivalentTypeRule(iload_0, iload(0)).

instructionHasEquivalentTypeRule(iload_1, iload(1)).

instructionHasEquivalentTypeRule(iload_2, iload(2)).

instructionHasEquivalentTypeRule(iload_3, iload(3)).

imul:

An imul instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(imul, iadd).

ineg:

An ineg instruction is type safe iff there is a type matching int on the
incoming operand stack. The ineg instruction does not alter the type
state.

instructionIsTypeSafe(ineg, Environment, _Offset, StackFrame,

0 n 3≤ ≤

VERIFICATION OF class FILES 243

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

instanceof:

An instanceof instruction with operand CP is type safe iff CP
refers to a constant pool entry denoting either a class or an array, and
one can validly replace the type Object on top of the incoming
operand stack with type int yielding the outgoing type state.

instructionIsTypeSafe(instanceof(CP), Environment, _Offset,
StackFrame, NextStackFrame, ExceptionStackFrame) :-

(CP = class(_, _) ; CP = arrayOf(_)),

isBootstapLoader(BL),

validTypeTransition(Environment, [class(’java/lang/Object’), BL], int,
StackFrame,NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

invokeinterface:

An invokeinterface instruction is type safe iff all of the following
conditions hold:

• Its first operand, CP, refers to a constant pool entry denoting an
interface method named MethodName with descriptor Descriptor
that is a member of an interface MethodClassName.

• MethodName is not <init>.

• MethodName is not <clinit>.

• Its second operand, Count, is a valid count operand (see below).

• One can validly replace types matching the type
MethodClassName and the argument types given in Descriptor on
the incoming operand stack with the return type given in Descriptor,
yielding the outgoing type state.

instructionIsTypeSafe(invokeinterface(CP, Count, 0), Environment,
_Offset,

THE CLASS FILE FORMAT244

 StackFrame, NextStackFrame, ExceptionStackFrame) :-

CP = imethod(MethodClassName, MethodName, Descriptor),

MethodName \= ’<init>’,

MethodName \= ’<clinit>’,

parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

currentClassLoader(Environment, L),

reverse([class(MethodClassName, L) | OperandArgList],
StackArgList),

canPop(StackFrame, StackArgList, TempFrame),

validTypeTransition(Environment, [], ReturnType, TempFrame,
NextStackFrame),

countIsValid(Count, StackFrame, TempFrame),
exceptionStackFrame(StackFrame, ExceptionStackFrame).

The count operand of an invokeinterface instruction is valid if it
equals the size of the arguments to the instruction. This is equal to the
difference between the size of InputFrame and OutputFrame.

countIsValid(Count, InputFrame, OutputFrame) :-

InputFrame = frame(_Locals1, OperandStack1, _Flags1),

OutputFrame = frame(_Locals2, OperandStack2, _Flags2),

length(OperandStack1, Length1),

length(OperandStack2, Length2),

Count =:= Length1 - Length2.

invokespecial:

An invokespecial instruction is type safe iff all of the following
conditions hold:

• Its first operand, CP, refers to a constant pool entry denoting a
method named MethodName with descriptor Descriptor that is a
member of a class MethodClassName.

Either

• MethodName is not <init>.

• MethodName is not <clinit>.

VERIFICATION OF class FILES 245

• One can validly replace types matching the current class and the
argument types given in Descriptor on the incoming operand stack
with the return type given in Descriptor, yielding the outgoing type
state.

• One can validly replace types matching the class
MethodClassName and the argument types given in Descriptor on
the incoming operand stack with the return type given in Descriptor.

instructionIsTypeSafe(invokespecial(CP), Environment, _Offset,
StackFrame, NextStackFrame, ExceptionStackFrame) :-

CP = method(MethodClassName, MethodName, Descriptor),

MethodName \= ’<init>’,

MethodName \= ’<clinit>’,

parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

thisClass(Environment, CurrentClass),

reverse([CurrentClass | OperandArgList], StackArgList),

validTypeTransition(Environment, StackArgList, ReturnType,
StackFrame, NextStackFrame),

currentClassLoader(Environment, L),

reverse([class(MethodClassName, L) | OperandArgList],
StackArgList2),

validTypeTransition(Environment, StackArgList2, ReturnType,
StackFrame, _ResultStackFrame),

isAssignable(class(CurrentClassName, L),
class(MethodClassName, L)).

exceptionStackFrame(StackFrame, ExceptionStackFrame).

Or

• MethodName is <init>.

• Descriptor specifies a void return type.

• One can validly pop types matching the argument types given in
Descriptor and an uninitialized type, UninitializedArg, off the
incoming operand stack, yielding OperandStack.

THE CLASS FILE FORMAT246

• The outgoing type state is derived from the incoming type state by
first replacing the incoming operand stack with OperandStack and
then replacing all instances of UninitializedArg with the type of
instance being initialized.

instructionIsTypeSafe(invokespecial(CP), Environment, _Offset,
StackFrame, NextStackFrame, ExceptionStackFrame) :-

CP = method(MethodClassName, ’<init>’, Descriptor),

parseMethodDescriptor(Descriptor, OperandArgList, void),

reverse(OperandArgList, StackArgList),

canPop(StackFrame, StackArgList, TempFrame),

TempFrame = frame(Locals, FullOperandStack, Flags),

FullOperandStack = [UninitializedArg | OperandStack],

currentClassLoader(Environment, CurrentLoader),

rewrittenUninitializedType(UninitializedArg, Environment,
class(MethodClassName, CurrentLoader), This),

rewrittenInitializationFlags(UninitializedArg, Flags, NextFlags),

substitute(UninitializedArg, This, OperandStack,
NextOperandStack),

substitute(UninitializedArg, This, Locals, NextLocals),

NextStackFrame = frame(NextLocals, NextOperandStack,
NextFlags),

ExceptionStackFrame = frame(NextLocals, [], Flags),

passesProtectedCheck(Environment, MethodClassName, ‘<init>’,
Descriptor, StackFrame).

Special rule for invokespecial of an <init> method.

This rule is the sole motivation for passing back a distinct exception
stack frame. The concern is that invokespecial can cause a
superclass <init> method to be invoked, and that invocation could
fail, leaving this uninitialized. This situation cannot be created using
Java programming language source code, but can be created through
JVM assembly programming.

VERIFICATION OF class FILES 247

The original frame holds an uninitialized object in a local and has flag
uninitializedThis. Normal termination of invokespecial
initializes the uninitialized object and turns off the
uninitializedThis flag. But if the invocation of an <init>
method throws an exception, the uninitialized object might be left in a
partially initialized state, and needs to be made permanently unusable.
This is represented by an exception frame containing the broken object
(the new value of the local) and the uninitializedThis flag (the
old flag). There is no way to get from an apparently-initialized object
bearing the uninitializedThis flag to a properly initialized
object, so the object is permanently unusable. If not for this case, the
exception stack frame could be the same as the input stack frame.

rewrittenUninitializedType(uninitializedThis, Environment, _MethodClass,
This) :-

thisClass(Environment, This).

rewrittenUninitializedType(uninitialized(Address), Environment,
MethodClass, MethodClass) :-

allInstructions(Environment, Instructions),

member(instruction(Address, new(MethodClass)), Instructions).

Computes what type the uninitialized argument's type needs to be
rewritten to.

There are 2 cases.

If we are initializing an object within its constructor, its type is initially
uninitializedThis. This type will be rewritten to the type of the
class of the <init> method.

The second case arises from initialization of an object created by new.
The uninitialized arg type is rewritten to MethodClass, the type of the
method holder of <init>. We check whether there really is a new
instruction at Address.

rewrittenInitializationFlags(uninitializedThis, _Flags, []).

rewrittenInitializationFlags(uninitialized(_), Flags, Flags).

THE CLASS FILE FORMAT248

substitute(_Old, _New, [], []).

substitute(Old, New, [Old | FromRest], [New | ToRest]) :- substitute(Old,
New, FromRest, ToRest).

substitute(Old, New, [From1 | FromRest], [From1 | ToRest]) :-

From1 \= Old,

substitute(Old, New, FromRest, ToRest).

invokestatic:

An invokestatic instruction is type safe iff all of the following
conditions hold:

• Its first operand, CP, refers to a constant pool entry denoting a
method named MethodName with descriptor Descriptor.

• MethodName is not <clinit>.

• One can validly replace types matching the argument types given in
Descriptor on the incoming operand stack with the return type given
in Descriptor, yielding the outgoing type state.

instructionIsTypeSafe(invokestatic(CP), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = method(_MethodClassName, MethodName, Descriptor),

MethodName \= ’<clinit>’,

parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

reverse(OperandArgList, StackArgList),

validTypeTransition(Environment, StackArgList, ReturnType,
StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

invokevirtual:

An invokevirtual instruction is type safe iff all of the following
conditions hold:

VERIFICATION OF class FILES 249

• Its first operand, CP, refers to a constant pool entry denoting a
method named MethodName with descriptor Descriptor that is a
member of an class MethodClassName.

• MethodName is not <init>.

• MethodName is not <clinit>.

• One can validly replace types matching the class
MethodClassName and the argument types given in Descriptor on
the incoming operand stack with the return type given in Descriptor,
yielding the outgoing type state.

• If the method is protected, the usage conforms to the special rules
governing access to protected members.

instructionIsTypeSafe(invokevirtual(CP), Environment, _Offset,
StackFrame, NextStackFrame, ExceptionStackFrame) :-

CP = method(MethodClassName, MethodName, Descriptor),

MethodName \= ’<init>’,

MethodName \= ’<clinit>’,

parseMethodDescriptor(Descriptor, OperandArgList,
ReturnType),

reverse(OperandArgList, ArgList),

currentClassLoader(Environment, L),

reverse([class(MethodClassName, L) | OperandArgList],
StackArgList),

validTypeTransition(Environment, StackArgList, ReturnType,
StackFrame, NextStackFrame),

canPop(StackFrame, ArgList, PoppedFrame),

passesProtectedCheck(Environment, MethodClassName,
MethodName, Descriptor, PoppedFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ior:

An ior instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(ior, iadd).

THE CLASS FILE FORMAT250

irem:

An irem instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(irem, iadd).

ireturn:

An ireturn instruction is type safe if the enclosing method has a
declared return type of int, and one can validly pop a type matching
int off the incoming operand stack.

instructionIsTypeSafe(ireturn, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, int),

canPop(StackFrame, [int], _PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ishl:

An ishl instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(ishl, iadd).

ishr:

An ishr instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(ishr, iadd).

istore:

VERIFICATION OF class FILES 251

An istore instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a store instruction with
operand Index and type int is type safe and yields an outgoing type
state NextStackFrame.

instructionIsTypeSafe(istore(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

storeIsTypeSafe(Environment, Index, int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

istore_<n>:

The instructions istore_<n>, for , are typesafe iff the
equivalent istore instruction is type safe.

instructionHasEquivalentTypeRule(istore_0, istore(0)).

instructionHasEquivalentTypeRule(istore_1, istore(1)).

instructionHasEquivalentTypeRule(istore_2, istore(2)).

instructionHasEquivalentTypeRule(istore_3, istore(3)).

isub:

An isub instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(isub, iadd).

iushr:

An iushr instruction is type safe iff the equivalent iadd instruction
is type safe.

instructionHasEquivalentTypeRule(iushr,iadd).

ixor:

0 n 3≤ ≤

THE CLASS FILE FORMAT252

An ixor instruction is type safe iff the equivalent iadd instruction is
type safe.

instructionHasEquivalentTypeRule(ixor, iadd).

l2d:

An l2d instruction is type safe if one can validly pop long off the
incoming operand stack and replace it with double, yielding the
outgoing type state.

instructionIsTypeSafe(l2d, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long], double, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

l2f:

An l2f instruction is type safe if one can validly pop long off the
incoming operand stack and replace it with float, yielding the
outgoing type state.

instructionIsTypeSafe(l2f, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long], float, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

l2i:

An l2i instruction is type safe if one can validly pop long off the
incoming operand stack and replace it with int, yielding the outgoing
type state.

instructionIsTypeSafe(l2i, Environment, _Offset, StackFrame,

VERIFICATION OF class FILES 253

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ladd:

An ladd instruction is type safe iff one can validly replace types
matching long and long on the incoming operand stack with long
yielding the outgoing type state.

instructionIsTypeSafe(ladd, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long, long], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

laload:

An laload instruction is type safe iff one can validly replace types
matching int and array of long on the incoming operand stack with
long yielding the outgoing type state.

instructionIsTypeSafe(laload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(long)], long,
StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

land:

An land instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(land, ladd).

lastore:

THE CLASS FILE FORMAT254

A lastore instruction is type safe iff one can validly pop types
matching long, int and array of long off the incoming operand
stack yielding the outgoing type state.

instructionIsTypeSafe(lastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [long, int, arrayOf(long)], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lcmp:

A lcmp instruction is type safe iff one can validly replace types
matching long and long on the incoming operand stack with int
yielding the outgoing type state.

instructionIsTypeSafe(lcmp, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long, long], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lconst_<l>:

An lconst_0 instruction is type safe if one can validly push the type
long onto the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(lconst_0, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

An lconst_1 instruction is type safe iff the equivalent lconst_0
instruction is type safe.

VERIFICATION OF class FILES 255

instructionHasEquivalentTypeRule(lconst_1,lconst_0).

ldc:

An ldc instruction with operand CP is type safe iff CP refers to a
constant pool entry denoting an entity of type Type, where Type is
either int, float, String or Class and one can validly push Type
onto the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(ldc(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

functor(CP, Tag, _),

isBootstrapLoader(BL),

member([Tag, Type], [[int, int], [float, float], [string, class(’java/lang/
String’, BL)], [classConst, class(‘java/lang/Class’, BL)]]),

validTypeTransition(Environment, [], Type, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ldc_w:

An ldc_w instruction is type safe iff the equivalent ldc instruction is
type safe.

instructionHasEquivalentTypeRule(ldc_w(CP), ldc(CP))

ldc2_w:

An ldc2_w instruction with operand CP is type safe iff CP refers to a
constant pool entry denoting an entity of type Tag, where Tag is either
long or double, and one can validly push Tag onto the incoming
operand stack yielding the outgoing type state.

instructionIsTypeSafe(ldc2_w(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

functor(CP, Tag, _),

THE CLASS FILE FORMAT256

member(Tag, [long, double]),

validTypeTransition(Environment, [], Tag, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

ldiv:

An ldiv instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(ldiv, ladd).

lload:

An lload instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a load instruction with operand
Index and type long is type safe and yields an outgoing type state
NextStackFrame.

instructionIsTypeSafe(lload(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

loadIsTypeSafe(Environment, Index, long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lload_<n>:

The instructions lload_<n>, for , are typesafe iff the
equivalent lload instruction is type safe.

instructionHasEquivalentTypeRule(lload_0, lload(0)).

instructionHasEquivalentTypeRule(lload_1, lload(1)).

instructionHasEquivalentTypeRule(lload_2, lload(2)).

instructionHasEquivalentTypeRule(lload_3, lload(3)).

lmul:

0 n 3≤ ≤

VERIFICATION OF class FILES 257

An lmul instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(lmul, ladd).

lneg:

An lneg instruction is type safe iff there is a type matching long on
the incoming operand stack. The lneg instruction does not alter the
type state.

instructionIsTypeSafe(lneg, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [long], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lookupswitch:

A lookupswitch instruction is type safe if its keys are sorted, one
can validly pop int off the incoming operand stack yielding a new type
state BranchStackFrame, and all of the instructions targets are valid
branch targets assuming BranchStackFrame as their incoming type
state.

instructionIsTypeSafe(lookupswitch(Targets, Keys), Environment, _,
StackFrame,

 afterGoto, ExceptionStackFrame) :-

sort(Keys, Keys),

canPop(StackFrame, [int], BranchStackFrame),

checklist(targetIsTypeSafe(Environment, BranchStackFrame),
Targets),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lor:

THE CLASS FILE FORMAT258

An lor instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(lor, ladd).

lrem:

An lrem instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(lrem, ladd).

lreturn:

An lreturn instruction is type safe if the enclosing method has a
declared return type of long, and one can validly pop a type matching
long off the incoming operand stack.

instructionIsTypeSafe(lreturn, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, long),

canPop(StackFrame, [long], _PoppedStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lshl:

An lshl instruction is type safe if one can validly replace the types
int and long on the incoming operand stack with the type long
yielding the outgoing type state.

instructionIsTypeSafe(lshl, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, long], long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

VERIFICATION OF class FILES 259

lshr:

An lshr instruction is type safe iff the equivalent lshl instruction is
type safe.

instructionHasEquivalentTypeRule(lshr, lshl).

lstore:

An lstore instruction with operand Index is type safe and yields an
outgoing type state NextStackFrame, if a store instruction with
operand Index and type long is type safe and yields an outgoing type
state NextStackFrame.

instructionIsTypeSafe(lstore(Index), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

storeIsTypeSafe(Environment, Index, long, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

lstore_<n>:

The instructions lstore_<n>, for , are typesafe iff the
equivalent lstore instruction is type safe.

instructionHasEquivalentTypeRule(lstore_0, lstore(0)).

instructionHasEquivalentTypeRule(lstore_1, lstore(1)).

instructionHasEquivalentTypeRule(lstore_2, lstore(2)).

instructionHasEquivalentTypeRule(lstore_3, lstore(3)).

lsub:

An lsub instruction is type safe iff the equivalent ladd instruction is
type safe.

0 n 3≤ ≤

THE CLASS FILE FORMAT260

instructionHasEquivalentTypeRule(lsub, ladd).

lxor:

An lxor instruction is type safe iff the equivalent ladd instruction is
type safe.

instructionHasEquivalentTypeRule(lxor, ladd).

lushr:

An lushr instruction is type safe iff the equivalent lshl instruction
is type safe.

instructionHasEquivalentTypeRule(lushr, lshl).

monitorenter:

A monitorenter instruction is type safe iff one can validly pop a
type matching reference off the incoming operand stack yielding
the outgoing type state.

instructionIsTypeSafe(monitorenter, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

 canPop(StackFrame, [reference], NextStackFrame),

 exceptionStackFrame(StackFrame, ExceptionStackFrame).

monitorexit:

A monitorexit instruction is type safe iff the equivalent
monitorenter instruction is type safe.

instructionHasEquivalentTypeRule(monitorexit, monitorenter).

multinewarray:

VERIFICATION OF class FILES 261

A multinewarray instruction with operands CP and Dim is type
safe iff CP refers to a constant pool entry denoting an array type whose
dimension is greater or equal to Dim, Dim is strictly positive, and one
can validly replace Dim int types on the incoming operand stack with
the type denoted by CP yielding the outgoing type state.

instructionIsTypeSafe(multianewarray(CP, Dim), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = arrayOf(_),

classDimension(CP, Dimension),

Dimension >= Dim,

Dim > 0,

/* Make a list of Dim ints */

findall(int, between(1, Dim, _), IntList),

validTypeTransition(Environment, IntList, CP, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The dimension of an array type whose component type is also an array
type is 1 more than the dimension of its component type.

classDimension(arrayOf(X), Dimension) :-

classDimension(X, Dimension1),

Dimension is Dimension1 + 1.

classDimension(_, Dimension) :- Dimension = 0.

new:

A new instruction with operand CP at offset Offset is type safe iff CP
refers to a constant pool entry denoting a class type, the type
uninitialized(Offset) does not appear in the incoming
operand stack, and one can validly push uninitialized(Offset)

THE CLASS FILE FORMAT262

onto the incoming operand stack and replace
uninitialized(Offset) with top in the incoming local
variables yielding the outgoing type state.

instructionIsTypeSafe(new(CP), Environment, Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, OperandStack, Flags),

CP = class(_, _),

NewItem = uninitialized(Offset),

notMember(NewItem, OperandStack),

substitute(NewItem, top, Locals, NewLocals),

validTypeTransition(Environment, [], NewItem,

frame(NewLocals, OperandStack, Flags),

NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

newarray:

A newarray instruction with operand TypeCode is type safe iff
TypeCode corresponds to the primitive type ElementType, and one
can validly replace the type int on the incoming operand stack with the
type ‘array of ElementType’, yielding the outgoing type state.

instructionIsTypeSafe(newarray(TypeCode), Environment, _Offset,
StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

primitiveArrayInfo(TypeCode, _TypeChar, ElementType,
_VerifierType),

validTypeTransition(Environment, [int], arrayOf(ElementType),
StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

The correspondence between type codes and primitive types is
specified by the following predicate:

VERIFICATION OF class FILES 263

primitiveArrayInfo(4, 0'Z, boolean, int).

primitiveArrayInfo(5, 0'C, char, int).

primitiveArrayInfo(6, 0'F, float, float).

primitiveArrayInfo(7, 0'D, double, double).

primitiveArrayInfo(8, 0'B, byte, int).

primitiveArrayInfo(9, 0'S, short, int).

primitiveArrayInfo(10, 0'I, int, int).

primitiveArrayInfo(11, 0'J, long, long).

nop:

A nop instruction is always type safe. The nop instruction does not
affect the type state.

instructionIsTypeSafe(nop, _Environment, _Offset, StackFrame,

 StackFrame, ExceptionStackFrame) :-

exceptionStackFrame(StackFrame, ExceptionStackFrame).

pop:

A pop instruction is type safe iff one can validly pop a category 1 type
off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(pop, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, [Type | Rest], Flags),

Type \= top,

sizeOf(Type, 1),

NextStackFrame = frame(Locals, Rest, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

pop2:

THE CLASS FILE FORMAT264

A pop2 instruction is type safe iff it is a type safe form of the pop2
instruction.

instructionIsTypeSafe(pop2, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, InputOperandStack, Flags),

pop2SomeFormIsTypeSafe(InputOperandStack,
OutputOperandStack),

NextStackFrame = frame(Locals, OutputOperandStack, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

A pop2 instruction is a type safe form of the pop2 instruction iff it is a
type safe form 1 pop2 instruction or a type safe form 2 pop2
instruction.

pop2SomeFormIsTypeSafe(InputOperandStack, OutputOperandStack) :-

pop2Form1IsTypeSafe(InputOperandStack, OutputOperandStack).

pop2SomeFormIsTypeSafe(InputOperandStack, OutputOperandStack) :-

pop2Form2IsTypeSafe(InputOperandStack, OutputOperandStack).

A pop2 instruction is a type safe form 1 pop2 instruction iff one can
validly pop two types of size 1 off the incoming operand stack yielding
the outgoing type state.

pop2Form1IsTypeSafe([Type1, Type2 | Rest], Rest) :-

sizeOf(Type1, 1),

sizeOf(Type2, 1).

VERIFICATION OF class FILES 265

A pop2 instruction is a type safe form 2 pop2 instruction iff one can
validly pop a type of size 2 off the incoming operand stack yielding the
outgoing type state.

pop2Form2IsTypeSafe([top, Type | Rest], Rest) :-

sizeOf(Type, 2).

putfield:

A putfield instruction with operand CP is type safe iff CP refers to
a constant pool entry denoting a field whose declared type is FieldType,
declared in a class FieldClass, and one can validly pop types matching
FieldType and FieldClass off the incoming operand stack yielding the
outgoing type state.

instructionIsTypeSafe(putfield(CP), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = field(FieldClass, FieldName, FieldDescriptor),

parseFieldDescriptor(FieldDescriptor, FieldType),

canPop(StackFrame, [FieldType], PoppedFrame),

passesProtectedCheck(Environment, FieldClass, FieldName,
FieldDescriptor, PoppedFrame),

currentClassLoader(Environment, CurrentLoader),

canPop(StackFrame, [FieldType, class(FieldClass, CurrentLoader)],
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

putstatic:

A putstatic instruction with operand CP is type safe iff CP refers
to a constant pool entry denoting a field whose declared type is
FieldType, and one can validly pop a type matching FieldType off the
incoming operand stack yielding the outgoing type state.

THE CLASS FILE FORMAT266

instructionIsTypeSafe(putstatic(CP), _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

CP = field(_FieldClass, _FieldName, FieldDescriptor),

parseFieldDescriptor(FieldDescriptor, FieldType),

canPop(StackFrame, [FieldType], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

return:

A return instruction is type safe if the enclosing method declares a
void return type, and either:

• The enclosing method is not an <init> method, or

• this has already been completely initialized at the point where the
instruction occurs.

instructionIsTypeSafe(return, Environment, _Offset, StackFrame,

 afterGoto, ExceptionStackFrame) :-

thisMethodReturnType(Environment, void),

StackFrame = frame(_Locals, _OperandStack, Flags),

notMember(flagThisUninit, Flags),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

saload:

An saload instruction is type safe iff one can validly replace types
matching int and array of short on the incoming operand stack with
int yielding the outgoing type state.

instructionIsTypeSafe(saload, Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [int, arrayOf(short)], int,
StackFrame, NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

VERIFICATION OF class FILES 267

sastore:

An sastore instruction is type safe iff one can validly pop types
matching int, int and array of short off the incoming operand
stack yielding the outgoing type state.

instructionIsTypeSafe(sastore, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame, [int, int, arrayOf(short)], NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

sipush:

An sipush instruction is type safe iff one can validly push the type
int onto the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(sipush(_Value), Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

validTypeTransition(Environment, [], int, StackFrame,
NextStackFrame),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

swap:

A swap instruction is type safe iff one can validly replace two category
1 types, Type1 and Type2, on the incoming operand stack with the
types Type2 and Type1 yielding the outgoing type state.

instructionIsTypeSafe(swap, _Environment, _Offset, StackFrame,

 NextStackFrame, ExceptionStackFrame) :-

StackFrame = frame(_Locals, [Type1, Type2 | Rest], _Flags),

sizeOf(Type1, 1),

sizeOf(Type2, 1),

NextStackFrame = frame(_Locals, [Type2, Type1 | Rest], _Flags),

THE CLASS FILE FORMAT268

exceptionStackFrame(StackFrame, ExceptionStackFrame).

tableswitch:

A tableswitch instruction is type safe if its keys are sorted, one can
validly pop int off the incoming operand stack yielding a new type
state BranchStackFrame, and all of the instructions targets are valid
branch targets assuming BranchStackFrame as their incoming type
state.

instructionIsTypeSafe(tableswitch(Targets, Keys), Environment, _Offset,

 StackFrame, afterGoto, ExceptionStackFrame) :-

sort(Keys, Keys),

canPop(StackFrame, [int], BranchStackFrame),

checklist(targetIsTypeSafe(Environment, BranchStackFrame),
Targets),

exceptionStackFrame(StackFrame, ExceptionStackFrame).

wide:

The wide instructions follow the same rules as the instructions they
widen.

instructionHasEquivalentTypeRule(wide(WidenedInstruction),
WidenedInstruction).

The type state after an instruction completes abruptly is the same as the incoming
type state, except that the operand stack is
empty.exceptionStackFrame(StackFrame, ExceptionStackFrame) :-

StackFrame = frame(Locals, _OperandStack, Flags),

ExceptionStackFrame = frame(Locals, [], Flags).

Most of the type rules in this specification depend on the notion of a
valid type transition

VERIFICATION OF class FILES 269

A type transition is valid if one can pop a list of expected types off the
incoming type state’s operand stack and replace them with an expected
result type, resulting in a new valid type state. In particular, the size of
the operand stack in the new type state must not exceed its maximum
declared size.

validTypeTransition(Environment, ExpectedTypesOnStack, ResultType,

 frame(Locals, InputOperandStack, Flags),

 frame(Locals, NextOperandStack, Flags)) :-

popMatchingList(InputOperandStack, ExpectedTypesOnStack,
InterimOperandStack),

pushOperandStack(InterimOperandStack, ResultType,
NextOperandStack),

operandStackHasLegalLength(Environment, NextOperandStack).

Access Ith element of the operand stack from a type state.

nth1OperandStackIs(I, frame(_Locals, OperandStack, _Flags), Element)
:-

nth1(I, OperandStack, Element).

4.11.2 Verification by Type Inference

Class files that do not contain StackMapTable attributes (which necessarily have a
version number of 49.0 or below) must be verified using type inference, as described
below.

4.11.2.1 The Process of Verification by Type Inference

During linking, the verifier checks the code array of the Code attribute for each
method of the class file by performing data-flow analysis on each method. The
verifier ensures that at any given point in the program, no matter what code path is
taken to reach that point, the following is true:

THE CLASS FILE FORMAT270

• The operand stack is always the same size and contains the same types of val-
ues.

• No local variable is accessed unless it is known to contain a value of an appro-
priate type.

• Methods are invoked with the appropriate arguments.

• Fields are assigned only using values of appropriate types.

• All opcodes have appropriate type arguments on the operand stack and in the
local variable array.

• There is never an uninitialized class instance in a local variable in code pro-
tected by an exception handler. However, an uninitialized class instance may
be on the operand stack in code protected by an exception handler. When an
exception is thrown, the contents of the operand stack are discarded.

For further information on this pass, see Section 4.11.2.2, “The Bytecode Verifier.”

For efficiency reasons, certain tests that could in principle be performed by the veri-
fier are delayed until the first time the code for the method is actually invoked. In so
doing, the verifier avoids loading class files unless it has to.

For example, if a method invokes another method that returns an instance of class
A, and that instance is assigned only to a field of the same type, the verifier does
not bother to check if the class A actually exists. However, if it is assigned to a
field of the type B, the definitions of both A and B must be loaded in to ensure that
A is a subclass of B.

4.11.2.2 The Bytecode Verifier

This section looks at the verification of Java virtual machine code in more detail.

The code for each method is verified independently. First, the bytes that make up
the code are broken up into a sequence of instructions, and the index into the code
array of the start of each instruction is placed in an array. The verifier then goes
through the code a second time and parses the instructions. During this pass a data
structure is built to hold information about each Java virtual machine instruction
in the method. The operands, if any, of each instruction are checked to make sure
they are valid. For instance:

VERIFICATION OF class FILES 271

• Branches must be within the bounds of the code array for the method.

• The targets of all control-flow instructions are each the start of an instruction.
In the case of a wide instruction, the wide opcode is considered the start of the
instruction, and the opcode giving the operation modified by that wide instruc-
tion is not considered to start an instruction. Branches into the middle of an
instruction are disallowed.

• No instruction can access or modify a local variable at an index greater than or
equal to the number of local variables that its method indicates it allocates.

• All references to the constant pool must be to an entry of the appropriate type.
For example: the instruction getfield must reference a field.

• The code does not end in the middle of an instruction.

• Execution cannot fall off the end of the code.

• For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of an instruction or, in the case of the end-
ing point, immediately past the end of the code. The starting point must be
before the ending point. The exception handler code must start at a valid
instruction, and it must not start at an opcode being modified by the wide
instruction.

For each instruction of the method, the verifier records the contents of the operand
stack and the contents of the local variable array prior to the execution of that
instruction. For the operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know either the type of the
contents of that local variable or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (e.g., byte, short, char) when
determining the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the method, the
local variables that represent parameters initially contain values of the types
indicated by the method’s type descriptor; the operand stack is empty. All other
local variables contain an illegal value. For the other instructions, which have not
been examined yet, no information is available regarding the operand stack or
local variables.

Finally, the data-flow analyzer is run. For each instruction, a “changed” bit
indicates whether this instruction needs to be looked at. Initially, the “changed”

THE CLASS FILE FORMAT272

bit is set only for the first instruction. The data-flow analyzer executes the
following loop:

1. Select a virtual machine instruction whose “changed” bit is set. If no instruc-
tion remains whose “changed” bit is set, the method has successfully been ver-
ified. Otherwise, turn off the “changed” bit of the selected instruction.

2. Model the effect of the instruction on the operand stack and local variable array
by doing the following:

• If the instruction uses values from the operand stack, ensure that
there are a sufficient number of values on the stack and that the top
values on the stack are of an appropriate type. Otherwise, verifica-
tion fails.

• If the instruction uses a local variable, ensure that the specified local
variable contains a value of the appropriate type. Otherwise, verifi-
cation fails.

• If the instruction pushes values onto the operand stack, ensure that
there is sufficient room on the operand stack for the new values. Add
the indicated types to the top of the modeled operand stack.

• If the instruction modifies a local variable, record that the local vari-
able now contains the new type.

3. Determine the instructions that can follow the current instruction. Successor
instructions can be one of the following:

• The next instruction, if the current instruction is not an uncondi-
tional control transfer instruction (for instance goto, return, or
athrow). Verification fails if it is possible to “fall off” the last
instruction of the method.

• The target(s) of a conditional or unconditional branch or switch.

• Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variable array at the end of the
execution of the current instruction into each of the successor instructions. In
the special case of control transfer to an exception handler, the operand stack
is set to contain a single object of the exception type indicated by the exception
handler information.

VERIFICATION OF class FILES 273

• If this is the first time the successor instruction has been visited,
record that the operand stack and local variable values calculated in
steps 2 and 3 are the state of the operand stack and local variable
array prior to executing the successor instruction. Set the “changed”
bit for the successor instruction.

• If the successor instruction has been seen before, merge the operand
stack and local variable values calculated in steps 2 and 3 into the
values already there. Set the “changed” bit if there is any modifica-
tion to the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on each stack must be
identical. The types of values on the stacks must also be identical, except that
differently typed reference values may appear at corresponding places on the
two stacks. In this case, the merged operand stack contains a reference to an
instance of the first common superclass of the two types. Such a reference type
always exists because the type Object is a superclass of all class and interface
types. If the operand stacks cannot be merged, verification of the method fails.

To merge two local variable array states, corresponding pairs of local variables are
compared. If the two types are not identical, then unless both contain reference
values, the verifier records that the local variable contains an unusable value. If
both of the pair of local variables contain reference values, the merged state
contains a reference to an instance of the first common superclass of the two
types.

If the data-flow analyzer runs on a method without reporting a verification failure,
then the method has been successfully verified by the class file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now
examine each of these in more detail.

4.11.2.3 Values of Types long and double

Values of the long and double types are treated specially by the verification pro-
cess.

Whenever a value of type long or double is moved into a local variable at index
n, index n + 1 is specially marked to indicate that it has been reserved by the value
at index n and must not be used as a local variable index. Any value previously at
index n + 1 becomes unusable.

THE CLASS FILE FORMAT274

Whenever a value is moved to a local variable at index n, the index n − 1 is
examined to see if it is the index of a value of type long or double. If so, the local
variable at index n − 1 is changed to indicate that it now contains an unusable
value. Since the local variable at index n has been overwritten, the local variable at
index n − 1 cannot represent a value of type long or double.

Dealing with values of types long or double on the operand stack is simpler; the
verifier treats them as single values on the stack. For example, the verification
code for the dadd opcode (add two double values) checks that the top two items
on the stack are both of type double. When calculating operand stack length,
values of type long and double have length two.

Untyped instructions that manipulate the operand stack must treat values of type
double and long as atomic (indivisible). For example, the verifier reports a
failure if the top value on the stack is a double and it encounters an instruction
such as pop or dup. The instructions pop2 or dup2 must be used instead.

4.11.2.4 Instance Initialization Methods and Newly Created Objects

Creating a new class instance is a multistep process. The statement

...

new myClass(i, j, k);

...

can be implemented by the following:

...
new #1 // Allocate uninitialized space for myClass
dup // Duplicate object on the operand stack
iload_1 // Push i
iload_2 // Push j
iload_3 // Push k
invokespecial #5 // Invoke myClass.<init>
...

This instruction sequence leaves the newly created and initialized object on top of
the operand stack. (Additional examples of compilation to the instruction set of the
Java virtual machine are given in Chapter 7, “Compiling for the Java Virtual
Machine.”)

The instance initialization method (§3.9) for class myClass sees the new
uninitialized object as its this argument in local variable 0. Before that method
invokes another instance initialization method of myClass or its direct superclass

VERIFICATION OF class FILES 275

on this, the only operation the method can perform on this is assigning fields
declared within myClass.

When doing dataflow analysis on instance methods, the verifier initializes local
variable 0 to contain an object of the current class, or, for instance initialization
methods, local variable 0 contains a special type indicating an uninitialized object.
After an appropriate instance initialization method is invoked (from the current
class or the current superclass) on this object, all occurrences of this special type
on the verifier’s model of the operand stack and in the local variable array are
replaced by the current class type. The verifier rejects code that uses the new
object before it has been initialized or that initializes the object more than once. In
addition, it ensures that every normal return of the method has invoked an instance
initialization method either in the class of this method or in the direct superclass.

Similarly, a special type is created and pushed on the verifier’s model of the
operand stack as the result of the Java virtual machine instruction new. The special
type indicates the instruction by which the class instance was created and the type
of the uninitialized class instance created. When an instance initialization method
is invoked on that class instance, all occurrences of the special type are replaced
by the intended type of the class instance. This change in type may propagate to
subsequent instructions as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as there may
be multiple not-yet-initialized instances of a class in existence on the operand
stack at one time. For example, the Java virtual machine instruction sequence that
implements

new InputStream(new Foo(), new InputStream("foo"))
may have two uninitialized instances of InputStream on the operand stack at once.
When an instance initialization method is invoked on a class instance, only those
occurrences of the special type on the operand stack or in the local variable array
that are the same object as the class instance are replaced.

A valid instruction sequence must not have an uninitialized object on the operand
stack or in a local variable during a backwards branch, or in a local variable in
code protected by an exception handler or a finally clause. Otherwise, a devious
piece of code might fool the verifier into thinking it had initialized a class instance
when it had, in fact, initialized a class instance created in a previous pass through
a loop.

4.11.2.5 Exception Handlers

Java virtual machine code produced by Sun’s compiler for the Java programming
language always generates exception handlers such that:

THE CLASS FILE FORMAT276

• Either the ranges of instructions protected by two different exception handlers
always are completely disjoint, or else one is a subrange of the other. There is
never a partial overlap of ranges.

• The handler for an exception will never be inside the code that is being pro-
tected.

• The only entry to an exception handler is through an exception. It is impossible
to fall through or “goto” the exception handler.

These restrictions are not enforced by the class file verifier since they do not pose a
threat to the integrity of the Java virtual machine. As long as every nonexceptional
path to the exception handler causes there to be a single object on the operand stack,
and as long as all other criteria of the verifier are met, the verifier will pass the code.

4.12 Limitations of the Java Virtual Machine

The following limitations of the Java virtual machine are implicit in the class file
format:

• The per-class or per-interface constant pool is limited to 65535 entries by the
16-bit constant_pool_count field of the ClassFile structure (§4.2). This
acts as an internal limit on the total complexity of a single class or interface.

• The greatest number of local variables in the local variables array of a frame
created upon invocation of a method is limited to 65535 by the size of the
max_locals item of the Code attribute (§4.8.3) giving the code of the method,
and by the 16-bit local variable indexing of the Java virtual machine instruction
set. Note that values of type long and double are each considered to reserve
two local variables and contribute two units toward the max_locals value, so
use of local variables of those types further reduces this limit.

• The number of fields that may be declared by a class or interface is limited to
65535 by the size of the fields_count item of the ClassFile structure
(§4.2). Note that the value of the fields_count item of the ClassFile struc-
ture does not include fields that are inherited from superclasses or superinter-
faces.

• The number of methods that may be declared by a class or interface is limited
to 65535 by the size of the methods_count item of the ClassFile structure

LIMITATIONS OF THE JAVA VIRTUAL MACHINE 277

(§4.2). Note that the value of the methods_count item of the ClassFile
structure does not include methods that are inherited from superclasses or
superinterfaces.

• The number of direct superinterfaces of a class or interface is limited to 65535
by the size of the interfaces_count item of the ClassFile structure (§4.2).

• The size of an operand stack in a frame (§3.6) is limited to 65535 values by the
max_stack field of the Code attribute (§4.8.3). Note that values of type long
and double are each considered to contribute two units toward the max_stack
value, so use of values of these types on the operand stack
further reduces this limit.

• The number of dimensions in an array is limited to 255 by the size of the
dimensions opcode of the multianewarray instruction and by the constraints
imposed on the multianewarray, anewarray, and newarray instructions by
§4.10.2.

• The number of method parameters is limited to 255 by the definition of a
method descriptor (§4.4.3), where the limit includes one unit for this in the
case of instance or interface method invocations. Note that a method descriptor
is defined in terms of a notion of method parameter length in which a parameter
of type long or double contributes two units to the length, so parameters of
these types further reduce the limit.

• The length of field and method names, field and method descriptors, and other
constant string values is limited to 65535 characters by the 16-bit unsigned
length item of the CONSTANT_Utf8_info structure (§4.5.7). Note that the
limit is on the number of bytes in the encoding and not on the number of
encoded characters. UTF-8 encodes some characters using two or three bytes.
Thus, strings incorporating multibyte characters are further constrained.

THE CLASS FILE FORMAT278

