LORA / LORAWAN TUTORIAL 32

Resistor, Reactance, Impedance

v1.0.1

mobilefish.com

INTRO

- LoRa end nodes and gateways have antennas to transmit and receive the signals.
- In this tutorial I will explain why resistance, reactance and impedance plays an important role in antennas.
- Before I start with this tutorial please note the following:
 - I am not an antenna or electronics engineer.
 - possible way.
 - correct antenna is important when working with gateways and end nodes.

mobilefish.com

• My goal is to explain the most common used antenna terms to you in the simplest

• This and subsequent tutorials are all related to antenna topics, because using the

RESISTOR

- components.
- The resistor's (R) unit is Ohm (Ω). For example R=10k Ω

- energy in the form of heat.
- differentiate between other forms of resistance.

mobilefish.com

• The main function of resistors in a circuit is to control the flow of current to other

• In an electric circuit a resistor does not store any energy, it just dissipates some of the

• In a Direct Current (DC) or Alternating Current (AC) circuit the resistor behaves the same. In an AC circuit the resistor's resistance is also called the ohmic resistance to

CAPACITOR

- back to the circuit when necessary.
- The energy supplied to the capacitor is stored in the form of an electric field which is created between the plates of a capacitor.
- The capacitor's (C) unit is Farad (F). For example C=220 μ F.

called dielectric.

• The main function of a capacitor in a circuit is to store energy and to give this energy

• A capacitor consists of two plates and between those two plates there is an isolator

DIELECTRIC

- A dielectric is an electrical insulator. It is a very poor conductor of electric current.
- When a dielectric is placed in an electric field (E), practically no current will flow thru the dielectric.
- The dielectric can be polarised by the applied electric field.
- Dielectric materials are used in capacitors and in the construction of radio frequency transmission lines aka coaxial cables.

CAPACITOR

- permit current to pass, it has an infinite resistance.
- But in an Alternating Current (AC) circuit the capacitor has a resistance. The capacitor's resistance is called capacitive reactance (\mathbf{X}_{c}) .

mobilefish.com

• In a **Direct Current** (DC) circuit a capacitor acts as an open circuit and does not

CAPACITIVE REACTANCE

• The capacitive reactance (X_c) is calculated as follows:

X_c = $2 \times \pi \times f \times C$

The capacitive reactance (X_c) can also be written as:

where: $\omega = 2 \times \pi \times f$

 X_C is the capacitive reactance in Ohm [Ω] f is the frequency in Hertz [Hz] C is the capacitance in Farad [F]

mobilefish.com

In an AC circuit the frequency plays an important role.

INDUCTOR

- back to the circuit when necessary.
- The energy supplied to the inductor is stored in the form of a magnetic field which is created by the coil. The more windings the coil has the stronger the increased which means more energy can be stored.

mobilefish.com

• The main function of an inductor in a circuit is to store energy and to give this energy

generated magnetic field. If a metal core is put inside the coil the magnetic field is

INDUCTOR

• The inductor's (L) unit is Henry (H). For example L=4.7 μ H

- current to pass, it has zero resistance.
- But in an Alternating Current (AC) circuit the inductor has a resistance. The inductor's resistance is called inductive reactance $(\mathbf{X}_{\mathbf{L}})$.

mobilefish.com

• In a **Direct Current** (DC) circuit an inductor acts as an short circuit and allows the

INDUCTIVE REACTANCE

• The inductive reactance (X_L) is calculated as follows:

$X_L = 2 \times \pi \times f \times L$

The inductive reactance (X_L) can also be written as:

$X_{L} = \omega \times L$

where: $\omega = 2 \times \pi \times f$

 X_L is the inductive reactance in Ohm [Ω] f is the frequency in Hertz [Hz] L is the inductance in Henry [H]

mobilefish.com

In an AC circuit the frequency plays an important role.

RESISTOR, CAPACITOR AND INDUCTOR

• A field generator generates an Alternating Current (AC) and in an AC circuit a circuit:

- The resistor opposes the flow of **electrons**.

mobilefish.com

capacitor (C) and an inductor (L) both acts like a resistor. Lets assume the following

• The capacitor opposes the change in **voltage** by dropping or supplying the current. • The inductor opposes the change in **current** by dropping or supplying the voltage.

IMPEDANCE

Impedance (Z), measured in ohms, is the combined effect of all the ohmic resistance, capacitive reactance and inductive reactance.

$$\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{X}\mathbf{c}^2} = \sqrt{\mathbf{R}^2 + \left(\frac{\mathbf{I}}{\mathbf{\omega} \times \mathbf{C}}\right)^2}$$

$\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{X}_L^2} = \sqrt{\mathbf{R}^2 + (\mathbf{\omega} \times \mathbf{L})^2}$

mobilefish.com

• If an AC circuit has only an ohmic resistor and capacitor in series the impedance is:

• If an AC circuit has only an ohmic resistor and inductor in series the impedance is:

IMPEDANCE

• If an AC circuit has an ohmic resistor, inductor and capacitor in series the impedance is:

 $\mathbf{Z} = \sqrt{\mathbf{R}^2 + (\mathbf{X}_L - \mathbf{X}_C)^2} = \sqrt{\mathbf{R}^2 + ((\mathbf{\omega} \times \mathbf{L}) - (\frac{\mathbf{I}}{\mathbf{\omega} \times \mathbf{C}}))^2}$

where: $\omega = 2 \times \pi \times f$

Z is the impedance in Ohm $[\Omega]$ R is the ohmic resistance in Ohm $[\Omega]$ X_L is the inductive reactance in Ohm [Ω] X_c is the capacitive reactance in Ohm [Ω]

mobilefish.com

f is the frequency in Hertz [Hz] C is the capacitance in Farad [F] L is the inductance in Henry [H]

RESISTANCE, REACTANCE AND IMPEDANCE

which defines the total opposition to the current flow.

mobilefish.com

• Impedance (Z) is the combination of ohmic resistance (R) and reactance (X_c and X_L)

The ohmic resistance is drawn on the X-axis and the reactance is drawn on the Y-axis.

The capacitive reactance (X_C) is considered a negative number. The vector is drawn downwards.

The inductive reactance (X_L) is considered a positive number. The vector is drawn upwards.

The length of the hypotenuse is the total impedance (Z).

CAPACITORS AND INDUCTORS PHASE RELATIONSHIP

- peak at the same time.
- θ . The phase difference is ≤ 200 degrees.
- If the voltage leads the current the phase is positive.
- For inductive circuits the voltage leads the current. The phase is positive. For capacitive circuits the current leads the voltage. The phase is negative.
- Handy mnemonic: ELI THE ICEMAN = For inductive circuits (L) the voltage (E) leads the current () EL ICE

• In an AC circuit, when using capacitors or inductors, the current and voltage do not

• There is a phase difference between the voltage and current indicated by the angle

= For capacitive circuits (C) the current (I) leads the voltage (E)

mobilefish.com CAPACITORS AND INDUCTORS PHASE RELATIONSHIP

Inductive circuits (ELI): Voltage leads the current. Phase (θ) is positive.

Conductive circuits (ICE): Current leads the voltage. Phase (θ) is negative.

mobilefish.com

Dipole antenna $L_{total} = \frac{1}{4}\lambda + \frac{1}{4}\lambda = \frac{1}{2}\lambda$

The AC generated signal frequency matches the resonance frequency of the dipole antenna.

$$\lambda = c / f$$

DIPOLE ANTENNA VOLTAGE DISTRIBUTION

flows thru the dipole antenna: https://en.wikipedia.org/wiki/Dipole_antenna

mobilefish.com

• A nice animation where you can see the voltage distribution and how the current

mobilefish.com DIPOLE CURRENT AND VOLTAGE DISTRIBUTION

What is the purpose of this picture?

Just like capacitors and inductors there is a phase difference between the voltage (V) and the current (I).

Simply said an antenna has resistor, capacitor and inductor characteristics.

This means an antenna has: - Resistance R,

- Capacitive reactance X_C
- and Inductive reactance X_L

Thus an antenna has impedance (Z).

RADIATION AND OHMIC RESISTANCE

- In the previous slide I mentioned that an antenna has a resistance R. In fact an antenna has two types of resistance:

 - electrical power into heat radiation (Rloss).

Radiation resistance creates Electro Magnetic radiation. This is what we want.

Ohmic resistance creates heat. We do not want this.

mobilefish.com

• A radiation resistance (R_{rad}), which converts electrical power into EM radiation.

• And an ohmic resistance, which is loss on the antenna's structure that converts

RESONANT ANTENNA

cancel each other out.

• In a resonant antenna: - The reactance (X) is zero, the antenna is purely resistive (= R_{rad} + R_{loss}) which means that the voltage and current are in phase at the antenna feed point. - A maximum of current will flow thru the antenna. - The VSWR is close to 1. In the next tutorial I will explain what VSWR is.

mobilefish.com

• An antenna is called resonant when the capacitive (X_C) and inductive (X_L) reactances

RESONANT ANTENNA

- For a resonant antenna, the antenna efficiency is calculated as follows: Rrad Antenna efficiency = Rrad + Rloss
- antenna is not efficient.

mobilefish.com

• The radiation resistance should be much higher than ohmic resistance otherwise the

mobilefish.com VARIATION OF ANTENNA IMPEDANCE WITH FREQS

If an antenna is too short, the antenna is capacitive.

If an antenna is too long, the antenna is inductive.

mobilefish.com VARIATION OF ANTENNA IMPEDANCE WITH FREQS

AAI RF VECTOR IMPEDANCE ANALYZER N1201SA

Resonant freq. = 868 MHz

ANTENNA EFFICIENCY

• The radiation resistance (R_{rad}) is needed for converting electrical power into EM efficiency.

-X

Calculate the antenna efficiency for an resonant antenna:

Antenna efficiency = ____

Antenna efficiency =

Antenna efficiency = 0.74

mobilefish.com

radiation and that is what we want, all the rest are "losses" which hurt the antenna

ANTENNA IMPEDANCE

- In this picture a sleeve antenna is analysed. The analyser measures: Resistance R (= R_{rad} + R_{loss})= 50.20Ω Total reactance X (=X_C + X_L) = 4.798 Ω
- The antenna impedance Z is: $Z = \sqrt{R^2 + X^2}$ $Z = \sqrt{50.20^2 + 4.798^2}$ $Z = 50.43 \Omega$
- Why do we want the antenna impedance (Z) to be 50Ω ?

mobilefish.com

IMPEDANCE MATCHING

- The source, cable and antenna must have the same impedance. If not this will impact the signal.
- If $Z_{antenna} > Z_{cable}$, the signal is reflected. If $Z_{antenna} < Z_{cable}$, the signal strength is reduced. If $Z_{antenna} = Z_{cable}$, the signal strength is maximum.
- In general 50 Ω coax cables are used for data communications (LoRa, WiFi, etc.) or amateur radio.

mobilefish.com

Antenna

Zantenna

IMPEDANCE MATCHING

- In the gateway documentation you may find the following line: "The antenna port is well matched to standard 50 Ohm impedance." or "RF interface optimised to 50 Ohm."
- In the coax cable and antenna specification you may find the line: "Impendance: 50Ω"
- In an ideal situation: $Z_{\text{source}} = Z_{\text{cable}} = Z_{\text{antenna}} = 50 \Omega$

mobilefish.com

