LORA / LORAWAN TUTORIAL 43

Sleeve Dipole Antenna

v1.1.0

INTRO

• In this tutorial I will explain what a sleeve dipole antenna is.

- Just like a dipole antenna, a sleeve dipole antenna has two elements.
- One element is attached to the coax cable centre conductor.
- The other element which is a metal tube (sleeve) is around the coax cable. The sleeve is attached to the coax cable metallic shield.
- The sleeve dipole antenna is also know under several other names for example: vertical sleeve antenna and coaxial sleeve antenna.

sleeve dipole antenna

- The sleeve dipole antenna is a balanced antenna just like an ordinary dipole antenna.
- The sleeve dipole antenna is fed by a coax cable which is an unbalanced feed line. Normally in such a case a balun is needed.
- In this case however the sleeve acts as a balun which counter the effects of the current returning back along the outer braid of the coax cable (antenna current).

sleeve dipole antenna

This is the sleeve dipole antenna C as discussed in tutorial 33.

Ø tube outer diameter, t=wall thickness

66

dipole antenna (in free space).

• A sleeve dipole antenna has a gain of 2.15 dBi (= 0 dBd)

mobilefish.com

• The sleeve dipole antenna has the same donut shape radiation pattern as the normal

The antenna analyser with the sleeve dipole antenna C.

Measuring antenna parameters

mobilefish.com

Antenna C is discussed in tutorial 33.

MEASURED ANTENNA PARAMETERS

• In MY situation I got the following results: VSWR \approx 1.1 Good. It is < 2 $Z \approx 49\Omega$ $SII \approx -28 \, dB$

mobilefish.com

Good. Should be approx. 50Ω

MEASURED ANTENNA PARAMETERS

ATTENTION

- When buying an antenna: Beware many antennas do not work as advertised!
- 40).

mobilefish.com

• Use an antenna analyser, such as the NI20ISA, to check the antenna (see tutorial

• A correctly advertised sleeve dipole antenna should look like this:

 Foldable omnidirectional antenna Gain: 2.15 dBi Standing wave ratio / VSWR: <=2.0 Impedance: 50Ω Polarisation type: Vertical or Horizontal Housing Material: ABS Cable Connector: RP-SMA or SMA

VSWR is still below 2.

mobilefish.com

• There are sleeve dipole antennas which are tuned to work for both 868 MHz and 915 MHz. Here is one which is opened. It is antenna B mentioned in tutorial 33.

• Compared to single frequency tuned sleeve dipole antennas, these two frequencies tuned antennas costs slightly more and they have slightly higher VSWR values but the

mentioned in tutorial 40.

mobilefish.com

• I have been poking inside antenna B, which caused the VSWR to change to 2.4 as

• I was curious how this antenna was build, so I decided to disassemble it and tune it.

• Antenna B disassembled.

• Antenna B disassembled.

whether this is a good antenna.

• Antenna B modified.

tube l

coax cable jacket

antenna B, optimised for 868 MHz.

mobilefish.com

The antenna analyser with the modified sleeve dipole

MEASURED ANTENNA PARAMETERS

• In MY situation I got the following results: VSWR \approx 1.3 Good. It is < 2 $Z \approx 44\Omega$ $S|| \approx -|8 \, dB$

mobilefish.com

Good. Should be approx. 50Ω

MEASURED ANTENNA PARAMETERS

ANTENNATEST SETUP

- antenna C.
- More information about this end node, see: https://www.mobilefish.com/developer/lorawan/ lorawan quickguide build lora node rfm95 arduino pro mini.html
- The end node uses the MCCI LoRaWAN LMIC Library: https://github.com/mcci-catena/arduino-Imic
- The end node uses the following sketch: https://www.mobilefish.com/download/lora/ttn-otaa-pro-mini-sensors.ino.txt

mobilefish.com

• The modified sleeve dipole antenna B performance is compared with sleeve dipole

ANTENNA TEST SETUP

Modified sleeve dipole antenna B

mobilefish.com

Sleeve dipole antenna C

ANTENNA TEST SETUP

mobilefish.com

The building circumference.

The end node is placed inside the building in front of a window.

Two end node locations:

Location A, facing East and South. Altitude = $\sim 1 \text{ Im}$

Location B, facing West and North. Altitude = ~ 11 m

ANTENNATEST SETUP

- I have NOT modified the end node transmission power when using both sleeve dipole antennas.
- messages per minute were transmitted.
- The logged data can be found at: https://www.mobilefish.com/download/lora/sleeve_dipole_comparison.txt

mobilefish.com

Both sleeve dipole antennas were positioned at location A and in both cases two

 One or more gateways were able to receive my transmitted sensor data, see: https://drive.google.com/open? id=18SKbHVEIFHU6YjzYpgZL98v uHcmV4OPQ&usp=sharing

• End node tx power = 14 dBmData from: sleeve_dipole_comparison.txt

Gateway	Distance from end device [km]	Altitude [m]	Modified sleeve dipole B Average RSSI [dBm]	Sleeve dipole C Average RSSI [dBm]
eui-aa555a0000088013	1.57	42	- 7 *	-119*
eui-000080029c10dc24	14.7	45	-120 *	-120 *
eui-000080029c10db9b	4.36	30	-117.2 *	-119*
eui-0ba00000000000000000000000000000000000	5.02	20	-118.4	- 119.1
eui-60c5a8fffe760e60	4.15	30	-113.6 *	-115 *
eui-dca632fffe43df3e	0.458	10	-106	-106.3
eui-b827ebfffedcc77d	0.816	7	- 3 *	-115 *
eui-000080029c10dbb3	6.73	5	-120 *	
eui-0000024b08030c5f	1.57	40		-119*

* Only one or few measurements. I will ignore these results.

- average RSSI values.
- When using the modified antenna B it took 9 minutes to receive 15 messages. When using antenna C, which is my reference antenna, it took 11.5 minutes to receive 15 messages.
- This difference is caused by the limited number of measurements.
- situation it should take 7.5 to 8 minutes to receive these 15 messages.

mobilefish.com

• If you only look at the results you may notice there is no significant difference in the

Once more measurements were taken there was no significant difference in time.

• The Arduino sketch is configured to transmit 2 messages per minute. In a perfect

time	counter	port				
1 0:10:36	16	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:09:58	15	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:09:22	14	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:08:45	13	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:07:33	11	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:06:56	10	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:06:20	9	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
▲ 10:05:44	8	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:05:07	7	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:04:30	6	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14
10:03:54	5	1	devid: <u>youtube demo device</u>	payload: 0A 8C 05 78	humidity: 27	temperature: 14

mobilefish.com

Modified sleeve dipole antenna B.

time	counter	port				
1 0:38:26	19	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:37:50	18	1	devid: <u>youtube demo device</u>	payload: 09 C4 05 DC	humidity: 25	temperature: 15
1 0:37:12	17	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:36:36	16	1	devid: <u>youtube demo device</u>	payload: 09 C4 05 DC	humidity: 25	temperature: 15
1 0:35:58	15	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:35:21	14	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:34:44	13	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:34:08	12	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:33:32	11	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:32:56	10	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15
1 0:32:20	9	1	devid: <u>youtube demo device</u>	payload: 0A 28 05 DC	humidity: 26	temperature: 15

mobilefish.com

Sleeve dipole antenna C.

Looking at the results I can conclude that same.

mobilefish.com

• Looking at the results I can conclude that both sleeve dipole antennas performs the

REMARKS

- cable. Each connector/cable used is additional loss.
- dipole antenna.

• A nice Youtube tutorial how to build your own sleeve dipole antenna see: https://youtu.be/hK0KX0YcvH0

mobilefish.com

• If possible connect the antenna directly to the end node without the use of a coax

• Watch out! An antenna which looks like this does not necessarily mean it is a sleeve

REMARKS

• You get different results when the sleeve dipole antenna is folded or not. Measure the antenna parameters in both states.

Modified antenna B

Unfolded VSWR ≈ 1.2 $\mathbf{Z} \approx \mathbf{45}\Omega$ $SII \approx -18 \, dB$

mobilefish.com

Folded VSWR ≈ 1.7 $\mathbf{Z} \approx 48\Omega$ $S | \approx -12 dB$

SLEEVE DIPOLE & 4NEC2

• I have modelled antenna B in 4NEC2.

- See: <u>https://www.mobilefish.com/download/lora/sleeve_dipole.nec.txt</u>
- The modelled antenna has a VSWR > 2 and I was not able to use the optimise functionality.

THE ANTENNA IS PROBABLY NOT CORRECTLY MODELLED.

SLEEVE DIPOLE & 4NEC2

 Instead of throwing this antenna model away, I will keep it in case someone wants to use it and improve it.

