
 LORA / LORAWAN TUTORIAL 54
mobilefish.com

LoRaWAN 1.1 OTAA

v1.0.0

End
devices LoRaWAN

Gateways

Network
server

Application
servers

Join
server

INTRO
mobilefish.com

• In this tutorial I will explain the Over-The-Air-Activation (OTAA) in LoRaWAN 1.1.

PRESENTATION
mobilefish.com

• This presentation can be found at: 
https://www.mobilefish.com/download/lora/lora_part54.pdf

• All my LoRa/LoRaWAN tutorials and presentations can be found at: 
https://www.mobilefish.com/developer/lorawan/lorawan_quickguide_tutorial.html

https://www.mobilefish.com/developer/lorawan/lorawan_quickguide_tutorial.html

ACTIVATION METHODS
mobilefish.com

• An end device must first be activated before it is able to communicate with the
network server.

End
devices

Gateways

Network
server

Application
servers

Join
server

LoRaWAN 1.1

ACTIVATION METHODS
mobilefish.com

• There are two methods to activate an end device in a LoRaWAN 1.1 network: 
- Over-The-Air-Activation (OTAA)  
- Activation-By-Personalisation (ABP)

• Only the Over-The-Air-Activation (OTAA) will be explained in this tutorial, but please
be aware that it is a succinct explanation.

• I intentionally left out many details such as backward compatibility with LoRaWAN 1.0,
what if the end device is in a roaming situation, rejoining request, what if multiple join
servers are connected to the network server, etc.

INFORMATION SOURCES FOR THIS TUTORIAL
mobilefish.com

• The information presented in this video were taken from these two sources:

• The LoRaWAN 1.1 Specification: 
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-
v1.1.pdf

• The LoRaWAN Backend Interfaces 1.0 Specification: 
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm-backend-interfaces-
v1.0.pdf

JS

NS

AS

AS

https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm-backend-interfaces-v1.0.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm-backend-interfaces-v1.0.pdf

LORAWAN 1.0.2 OTAA & ABP
mobilefish.com

• In tutorial 21 you can find a simplified explanation of the OTAA (Over-The-Air-
Activation) and ABP (Activation-By-Personalisation) activation methods as described in
the LoRaWAN 1.0.2 specification.

network
server

application
server

gateway

end device

LoRaWAN 1.0.2

STORING KEYS IN END DEVICE & JOIN SERVER
mobilefish.com

network
server

application
servers

LoRaWAN
gateways

end devices

join
server

DevEUI
JoinEUI
AppKey
NwkKey

DevEUI
JoinEUI
AppKey
NwkKey DevEUI

AppKey
NwkKey

DevEUI
AppKey
NwkKey

STORING KEYS IN END DEVICE & JOIN SERVER
mobilefish.com

• OTAA is the preferred activation method because it provides the most secure way to
connect end devices to a network server. Before activation:

• End devices must know and store its DevEUI, JoinEUI, AppKey and NwkKey.

• The join server must know and store the same DevEUI, AppKey and NwkKey.

• The DevEUI and JoinEUI are not secret and are visible to everyone.

END DEVICE & JOIN SERVER STORE KEYS AND EUIS
mobilefish.com

• The DevEUI is a 64-bit global ID in IEEE EUI64 address space that uniquely identifies
the end-device.

• The JoinEUI is a 64-bit global ID in IEEE EUI64 address space that uniquely identifies
the join server that can assist in the processing of the join procedure and session keys
derivation.

• The AppKey and NwkKey are both an AES (Advanced Encryption Standard) 128 bit
symmetric keys (also known as root keys) and both end device and join server must
store the same keys and should never be sent over the network.

END DEVICE & JOIN SERVER STORE KEYS AND EUIS
mobilefish.com

• The Network Key (NwkKey) in the LoRaWAN 1.1 version is equivalent to the
Application Key (AppKey) in the LoRaWAN 1.0 version, the extra key (AppKey) in
the 1.1 version is to ensure that the operator on the network server would not be
able to see the application data.

NwkKey

AppKey

LoRaWAN 1.1 LoRaWAN 1.0

AppKey

END DEVICE
mobilefish.com

• The end device generates the DevNonce which is a 2-byte counter, starting at 0 when
the device is initially powered up and incremented with every join-request (max value
216 = 65535). The DevNonce value is used to prevent replay attacks.

• If the end device can be power-cycled then DevNonce shall be persistent, meaning
stored in a non-volatile memory.

• Resetting DevNonce without changing JoinEUI will cause the network server to
discard the join-requests of the device.

• For each end device, the network server keeps track of the last DevNonce value used
by the end device, and ignores join-requests if DevNonce is not incremented.

END DEVICE
mobilefish.com

• The end device constructs a message containing the JoinEUI, DevEUI and DevNonce.
To protect the message's integrity, the Message Integrity Code (MIC) is computed
using the NwkKey. 
 
cmac = aes128_cmac(NwkKey, MHDR | JoinEUI | DevEUI | DevNonce)  
MIC = cmac[0..3]

• The end device can now activate itself, by sending a join-request message as plain
text to the network server.

• The join-request PHYPayload consists of MHDR | JoinEUI | DevEUI | DevNonce |
MIC.

END DEVICE
mobilefish.com

• The end device signals which join server should be interrogated through the JoinEUI
field of the join-request message.

• Each join server is identified by a unique JoinEUI value.

OTAA MESSAGE FLOW A
mobilefish.com

end
device

network
server

Join
server

DevEUI
JoinEUI
AppKey
NwkKey

DevEUI
AppKey
NwkKey

JoinReq

- Check devNonce
- Check MIC
- JoinReq Message = 

PHYPayload of the Join-Request
message, MAC version, DevEUI,
DevAddr, DLSettings, RXDelay,
CFList

- Network server DNS lookup: 
 <JoinEUI>.joineuis. lora-alliance.org

Join-Request with MIC

- Create and store DevNonce
- Join-Request Message = 

JoinEUI, DevEUI,DevNonce

DevNonce
JoinNonce non-volatile memory

NETWORK SERVER
mobilefish.com

• The network server receives the join-request message and checks if the DevNonce
has not been used previously.

• The network server authenticates the end device with the MIC value.  
If accepted, the network server constructs a JoinReq message containing the
following:

• PHYPayload = MHDR|JoinEUI|DevEUI|DevNonce|MIC of the join-request message

• MAC version. The network server set the value of the MAC version to the highest
common version between the end device and the network server.

• DevEUI

NETWORK SERVER
mobilefish.com

• DevAddr (Device Address) 
The DevAddr (32 bits) maps the DevEUI (64 bits) to a network-internal shorter
address in order to reduce the protocol overhead in transmitted frames.

• Download Settings (DLSettings) 
Data rates to be used for receiving

• Receive Delay (RXDelay)  
Time between transmit and receive

• Optional list of network parameters (CFList) for the network the end-device is
joining.

NETWORK SERVER DNS LOOKUP
mobilefish.com

• The network server uses the Domain Name System (DNS) to look up the IP address
of the join server based on the JoinEUI in the received join-request message.

• DNS lookup on domain: <eui>.joineuis.lora-alliance.org  
The <eui> is the reverse hex representation with dots on each nibble.  
For example: 
JoinEUI (The Things Network Foundation): 70b3d57ed0000000  
The DNS lookup is: 
0.0.0.0.0.0.0.d.e.7.5.d.3.b.0.7.joineuis.lora-alliance.org  
 
The DNS lookup on the domain resolves this to: 
0.0.0.0.0.0.0.d.e.7.5.d.3.b.0.7.join.thethings.industries
(34.250.142.166)

http://0.7.joineuis.lora-alliance.org

NETWORK SERVER DNS LOOKUP
mobilefish.com

• If the DNS lookup succeeds, the network server sends the JoinReq message to the
join server.

OTAA MESSAGE FLOW B
mobilefish.com

end
device

network
server

Join
server

DevEUI
JoinEUI
AppKey
NwkKey

DevEUI
AppKey
NwkKey

JoinReq

- Increment JoinNonce
- Derive FNwkSIntKey,

SNwkSIntKey, NwkSEncKey
and AppSKey

- Generate MIC
- Join-Accept Message

(encrypted) = JoinNonce,
NetID, DevAddr, DLSettings,
RxDelay, CFList, MIC

- JoinAns Message = 
Result=Success,  
encrypted Join-Accept
message  

JoinAns

- Check Result==Success

Join-Accept with MIC (encrypted)

DevNonce
JoinNonce non-volatile memory

JOIN SERVER
mobilefish.com

• The join server process the joinReq message according to the MAC version (1.0, 1.0.1,
1.0.2, 1.0.3, 1.0.4 and 1.1).

• The join server provides the JoinNonce value (3 bytes in size, max value 224 =
8388607) which is a device specific counter value, that never repeats itself, and is
incremented each time a Join-Accept message is created.

• The join server processes the JoinReq message and derives the network session keys:  
- Serving Network Session Integrity Key (SNwkSIntKey)  
- Forwarding Network Session Integrity key (FNwkSIntKey) 
- Network Session Encryption key (NwkSEncKey)  
- Application Session Key (AppSKey)

JOIN SERVER
mobilefish.com

• The network session keys are derived with the NwkKey: 
FNwkSIntKey = aes128_encrypt(NwkKey, 0x01 | JoinNonce | JoinEUI | DevNonce | pad16)  
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03 | JoinNonce | JoinEUI | DevNonce | pad16)  
NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | JoinNonce | JoinEUI | DevNonce | pad16)

• And the AppSKey is derived with the AppKey: 
AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | JoinEUI | DevNonce | pad16)

• The network session keys and AppSKey are stored at the join server and are not send
to the network server.

• Forwarding Network Session Integrity key (FNwkSIntKey) - This is a network session
key that is used by the end device to calculate the MIC for uplink data messages to
ensure data integrity.

JOIN SERVER
mobilefish.com

• Serving Network Session Integrity Key (SNwkSIntKey) - This is a network session key
specific to the end device. It is used by the end device to verify the MIC for downlink
data messages to ensure data integrity.

• The Network Session Encryption Key - This is a network session key specific to the
end device. It is used to encrypt and decrypt uplink and downlink MAC commands
transmitted as payload on port 0 or in the FOpt field.

• The Application Session Key (AppSKey) - This is an application specific session key
used by both the application server and the end device to encrypt and decrypt the
application payloads. With this key the confidentiality of the data is secured.

JOIN SERVER
mobilefish.com

• The join server creates a join-accept message containing the following parameters:

• DLSettings - Downlink parameters

• RXDelay - Delay between TX and
RX

• CFList - Optional list of network
parameters for the network the
end-device is joining

• JoinNonce - A device specific counter
value, that never repeats itself, and is
incremented each time a Join-Accept
message is created.

• NetID - Network Identifier

• DevAddr - Device address

JOIN SERVER
mobilefish.com

• To protect the join-accept message integrity, the Message Integrity Code (MIC) is
computed using the JSIntKey. 
 
JSIntKey = aes128_encrypt(NwkKey, 0x06 | DevEUI | pad16)  
cmac = aes128_cmac(JSIntKey, 0xFF | JoinEUI | DevNonce | MHDR | JoinNonce | NetID |
DevAddr | DLSettings | RxDelay | CFList)  
MIC = cmac[0..3]

• The join-accept message is encrypted with the NwkKey. 
 
aes128_decrypt(NwkKey, JoinNonce | NetID | DevAddr | DLSettings | RxDelay | CFList | MIC)

JOIN SERVER
mobilefish.com

• The join server constructs a JoinAns containing the following:

• Result=Success

• The encrypted join-accept message.

• The join server sends the JoinAns to the network server.

NETWORK SERVER
mobilefish.com

• The network server receives the JoinAns message and if Result==Success the
network server forwards the encrypted join-accept message to the end device.

OTAA MESSAGE FLOW C
mobilefish.com

end
device

network
server

- Decrypt Join-Accept message
- Check MIC
- Check JoinNonce > Stored JoinNonce
- Store JoinNonce
- Use NwkKey to generate: 

FNwkSIntKey, SNwkSIntKey, and
NwkSEncKey

- Use AppKey to generate: 
AppSKey

Join-Accept
with MIC (encrypted)

Join
server

DevEUI
JoinEUI
AppKey
NwkKey

DevEUI
AppKey
NwkKey

DevNonce
JoinNonce non-volatile memory - Increment JoinNonce

- Derive FNwkSIntKey,
SNwkSIntKey, NwkSEncKey
and AppSKey

- Generate MIC
- Join-Accept Message

(encrypted) = JoinNonce,
NetID, DevAddr, DLSettings,
RxDelay, CFList, MIC

- JoinAns Message = 
Result=Success,  
encrypted Join-Accept
message  

JoinAns

- Check Result==Success

END DEVICE
mobilefish.com

• The end device decrypt the join-accept message with the NwkKey and verifies the
MIC of the join-accept message.

• The JoinNonce should be greater than the recorded one stored in the device. In that
case the new JoinNonce value replaces the previously stored one. If the device is
susceptible of being power cycled the JoinNonce shall be persistent (stored in a non-
volatile memory).

• If the join-accept message is accepted the end device generates the network session
keys FNwkSIntKey, SNwkSIntKey, and NwkSEncKey using the NwkKey, and generates
the AppSKey using the AppKey.

END DEVICE
mobilefish.com

• The network session keys are derived with the NwkKey: 
FNwkSIntKey = aes128_encrypt(NwkKey, 0x01 | JoinNonce | JoinEUI | DevNonce | pad16)  
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03 | JoinNonce | JoinEUI | DevNonce | pad16)  
NwkSEncKey = aes128_encrypt(NwkKey, 0x04 | JoinNonce | JoinEUI | DevNonce | pad16)

• And the AppSKey is derived with the AppKey: 
AppSKey = aes128_encrypt(AppKey, 0x02 | JoinNonce | JoinEUI | DevNonce | pad16)

OTAA MESSAGE FLOW D
mobilefish.com

application
server

end
device

network
server

Encrypted payload

DevEUI
JoinEUI
AppKey
NwkKey

Join
server

DevEUI
AppKey
NwkKey

DevNonce
JoinNonce non-volatile memory

- Encrypted AppSKey
is not made available
to application server

Encrypted payload

- FNwkSIntKey, SNwkSIntKey,
NwkSEncKey and AppSKey

AppSKeyAns
with encrypted AppSKey

AppSKeyReq
with DevEUI

- Decrypt encrypted
AppSKey with shared
key between AS and JS

- Use AppSKey to
decrypt the encrypted
payload

- AppSKey encrypted with shared
key between AS and JS

 

Shared
Key

Shared
Key

APPLICATION SERVER
mobilefish.com

• The end device has a payload containing sensor data.

• The end device encrypts the payload with the AppSKey and sends the encrypted
payload to the network server.

• The network server receives an uplink packet from the end device.  
If the encrypted AppSKey is not made available by the network server, which is the
case in this example, the network server forwards the encrypted packet to the
application server.

• The application server sends an AppSKeyReq message to the join server.  
The message requests the AppSKey identified by the DevEUI from the join server.

APPLICATION SERVER
mobilefish.com

• The AppSKey is encrypted using a shared key between the join server and the
application server.

• The join server sends the encrypted AppSKey to the application server in an
AppSKeyAns message.

• The application server decrypts the encrypted AppSKey with the shared key.

• The application server uses the AppSKey to decrypt the encrypted payload.

MESSAGE TYPES
mobilefish.com

• In this tutorial I have only discussed the message types marked with (*) but there are
more message types.

Message Types
JoinReq JoinAns *

RejoinReq RejoinAns
AppSKeyReq AppSKeyAns *
PRStartReq PRStartAns
PRStopReq PRStopAns
HRStartReq HRStartAns
HRStopReq HRStopAns

HomeNSReq HomeNSAns
ProfileReq ProfileAns

XmitDataReq XmitDataAns

Message Types
Join-Request Join-Accept *

Unconfirmed Data
Up

Unconfirmed Data
Down

Confirmed Data Up Confirmed Data
Down

Rejoin-request -

