/******************************************************************************* * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman * Copyright (c) 2018 Terry Moore, MCCI * * Permission is hereby granted, free of charge, to anyone * obtaining a copy of this document and accompanying files, * to do whatever they want with them without any restriction, * including, but not limited to, copying, modification and redistribution. * NO WARRANTY OF ANY KIND IS PROVIDED. * * This example sends a valid LoRaWAN packet with payload "Hello, * world!", using frequency and encryption settings matching those of * the The Things Network. * * This uses OTAA (Over-the-air activation), where where a DevEUI and * application key is configured, which are used in an over-the-air * activation procedure where a DevAddr and session keys are * assigned/generated for use with all further communication. * * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably * violated by this sketch when left running for longer)! * To use this sketch, first register your application and device with * the things network, to set or generate an AppEUI, DevEUI and AppKey. * Multiple devices can use the same AppEUI, but each device has its own * DevEUI and AppKey. * * Do not forget to define the radio type correctly in * arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt. * *******************************************************************************/ #include #include #include // // For normal use, we require that you edit the sketch to replace FILLMEIN // with values assigned by the TTN console. However, for regression tests, // we want to be able to compile these scripts. The regression tests define // COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non- // working but innocuous value. // #ifdef COMPILE_REGRESSION_TEST # define FILLMEIN 0 #else # warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!" # define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN) #endif // This EUI must be in little-endian format, so least-significant-byte // first. When copying an EUI from ttnctl output, this means to reverse // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, // 0x70. static const u1_t PROGMEM APPEUI[8]={0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);} // This should also be in little endian format, see above. static const u1_t PROGMEM DEVEUI[8]= {0x00, 0xFC, 0xF6, 0x85, 0x99, 0x02, 0x72, 0x66}; void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);} // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from ttnctl can be copied as-is. static const u1_t PROGMEM APPKEY[16] = {0x52, 0xE5, 0x4E, 0x35, 0xB9, 0x1D, 0x36, 0xAA, 0xEA, 0x44, 0x98, 0xDB, 0xFB, 0x8B, 0xB9, 0x01}; void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);} static uint8_t mydata[] = "Hello, world!"; static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 60; // Pin mapping const lmic_pinmap lmic_pins = { .nss = 10, .rxtx = LMIC_UNUSED_PIN, .rst = 5, .dio = {2, 3, LMIC_UNUSED_PIN}, }; void printHex2(unsigned v) { v &= 0xff; if (v < 16) Serial.print('0'); Serial.print(v, HEX); } void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); { u4_t netid = 0; devaddr_t devaddr = 0; u1_t nwkKey[16]; u1_t artKey[16]; LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); Serial.print("netid: "); Serial.println(netid, DEC); Serial.print("devaddr: "); Serial.println(devaddr, HEX); Serial.print("AppSKey: "); for (size_t i=0; i