
ESA PSS-05-07 Issue 1 Revision 1
March 1995

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

Guide
to the software
operations and
maintenance
phase

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

Approved by:
The Inspector General, ESA

ii ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-07 Guide to the Software Operations and Maintenance
Phase

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 1994 First issue

1 1 1995 Minor updates for publication

Issue 1 Revision 1 approved, May 1995
Board for Software Standardisation and Control
M. Jones and U. Mortensen, co-chairmen

Issue 1 approved, 15th June 1995
Telematics Supervisory Board

Issue 1 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.
ESA Price code: E1
ISSN 0379-4059

Copyright © 1995 by European Space Agency

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) iii
TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION..1
1.1 PURPOSE ... 1
1.2 OVERVIEW.. 1

CHAPTER 2 THE OPERATIONS AND MAINTENANCE PHASE3
2.1 INTRODUCTION... 3
2.2 OPERATE SOFTWARE... 6

2.2.1 User support ... 6
2.2.2 Problem reporting.. 7

2.3 MAINTAIN SOFTWARE .. 9
2.3.1 Change Software ...10

2.3.1.1 Diagnose Problems...11
2.3.1.2 Review Changes..14
2.3.1.3 Modify Software...17

2.3.1.3.1 Evaluating the effects of a change...17
2.3.1.3.2 Keeping documentation up to date ...21

2.3.1.4 Verify software modifications ..22
2.3.2 Release Software...23

2.3.2.1 Define release..23
2.3.2.2 Document release ...25

2.3.2.2.1 Release number..25
2.3.2.2.2 Changes in the release...26
2.3.2.2.3 List of configuration items included in the release26
2.3.2.2.4 Installation instructions ...26

2.3.2.3 Audit release..26
2.3.2.4 Deliver release ...27

2.3.3 Install Release ...27
2.3.4 Validate release..27

2.4 UPDATE PROJECT HISTORY DOCUMENT..28
2.5 FINAL ACCEPTANCE...28

CHAPTER 3 TOOLS FOR SOFTWARE MAINTENANCE......................................31
3.1 INTRODUCTION...31
3.2 NAVIGATION TOOLS ...31
3.3 CODE IMPROVEMENT TOOLS ...32
3.4 REVERSE ENGINEERING TOOLS...33

CHAPTER 4 THE PROJECT HISTORY DOCUMENT..35
4.1 INTRODUCTION...35
4.2 STYLE..35

iv ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
PREFACE

4.3 EVOLUTION..35
4.4 RESPONSIBILITY..35
4.5 MEDIUM ...35
4.6 CONTENT...35

4.6.1 PHD/1 DESCRIPTION OF THE PROJECT..36
4.6.2 PHD/2 MANAGEMENT OF THE PROJECT..37

4.6.2.1 PHD/2.1 Contractual approach ...37
4.6.2.2 PHD/2.2 Project organisation ..37
4.6.2.3 PHD/2.3 Methods and tools ..37
4.6.2.4 PHD/2.4 Planning...38

4.6.3 PHD/3 SOFTWARE PRODUCTION ..38
4.6.3.1 PHD/3.1 Product size..38
4.6.3.2 PHD/3.2 Documentation...39
4.6.3.3 PHD/3.3 Effort..39
4.6.3.4 PHD/3.4 Computer resources ..39
4.6.3.5 PHD/3.5 Productivity ...39

4.6.4 PHD/4 QUALITY ASSURANCE REVIEW...40
4.6.5 PHD/5 FINANCIAL REVIEW ..41
4.6.6 PHD/6 CONCLUSIONS...41
4.6.7 PHD/7 PERFORMANCE OF THE SYSTEM IN THE OM PHASE....................41

CHAPTER 5 LIFE CYCLE MANAGEMENT ACTIVITIES43
5.1 INTRODUCTION...43
5.2 SOFTWARE PROJECT MANAGEMENT..43

5.2.1 Organisation ...44
5.2.2 Work packages..44
5.2.3 Resources ...45

5.2.3.1 Lehman's Laws..46
5.2.3.2 Code size maintenance cost estimating method47

5.2.4 Activity schedule..47
5.3 SOFTWARE CONFIGURATION MANAGEMENT ..47
5.4 SOFTWARE VERIFICATION AND VALIDATION..47
5.5 SOFTWARE QUALITY ASSURANCE ...49

APPENDIX A GLOSSARY ..A-1
APPENDIX B REFERENCES..B-1
APPENDIX C MANDATORY PRACTICES ...C-1
APPENDIX D INDEX...D-1

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) v
PREFACE

PREFACE

This document is one of a series of guides to software engineering produced by
the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in
projects.

Levels one and two of the document tree at the time of writing are shown in
Figure 1. This guide, identified by the shaded box, provides guidance about
implementing the mandatory requirements for the software Operations and
Maintenance Phase described in the top level document ESA PSS-05-0.

Guide to the
Software Engineering

Guide to the
User Requirements

Definition Phase

Guide to
Software Project

Management

PSS-05-01

PSS-05-02 UR Guide
PSS-05-03 SR Guide

PSS-05-04 AD Guide
PSS-05-05 DD Guide

PSS-05-08 SPM Guide
PSS-05-09 SCM Guide

PSS-05-11 SQA Guide

ESA
Software

Engineering
Standards

PSS-05-0

Standards

Level 1

Level 2

PSS-05-10 SVV Guide

PSS-05-06 TR Guide
PSS-05-07 OM Guide

Figure 1: ESA PSS-05-0 document tree

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this
guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Gianfranco Alvisi, Michael Jones,
Bryan Melton, Daniel de Pablo and Adriaan Scheffer.

vi ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
PREFACE

The BSSC wishes to thank Jon Fairclough for his assistance in the development
of the Standards and Guides, and to all those software engineers in ESA and Industry
who have made contributions.

Requests for clarifications, change proposals or any other comment concerning
this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr M Jones Attention of Mr U Mortensen
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 1
INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in house or by industry [Ref 1].

ESA PSS-05-0 defines the fourth phase of the software development
life cycle as the 'Transfer Phase' (TR phase). The outputs of this phase are
the provisionally accepted software system, the statement of provisional
acceptance, and the Software Transfer Document (STD). The software
enters practical use in the next and last phase of the software life cycle, the
'Operations and Maintenance' (OM) phase.

The OM Phase is the 'operational' phase of the life cycle in which
users operate the software and utilise the end products and services it
provides. The developers provide maintenance and user support until the
software is finally accepted, after which a maintenance organisation
becomes responsible for it.

This document describes how to maintain the software, support
operations, and how to produce the 'Project History Document' (PHD). This
document should be read by everyone involved with software maintenance
or software operations support. The software project manager of the
development organisation should read the chapter on the Project History
Document.

1.2 OVERVIEW

Chapter 2 discusses the OM phase. Chapters 3 and 4 discuss
methods and tools for software maintenance. Chapter 5 describes how to
write the PHD. Chapter 6 discusses life cycle management activities.

All the mandatory practices in ESA PSS-05-0 relevant to the
software operations and maintenance phase are repeated in this document.
The identifier of the practice is added in parentheses to mark a repetition.
This document contains no new mandatory practices.

2 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
INTRODUCTION

This page is intentionally left blank

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 3
THE OPERATIONS AND MAINTENANCE PHASE

CHAPTER 2
THE OPERATIONS AND MAINTENANCE PHASE

2.1 INTRODUCTION

Operations provide a product or a service to end users. This guide
discusses operations from the point of view of their interactions with
software maintenance activities and the support activities needed to use the
software efficiently and effectively.

Software maintenance is 'the process of modifying a software
system or component after delivery to correct faults, improve performance or
other attributes, or adapt to a changed environment' [Ref 7]. Maintenance is
always necessary to keep software usable and useful. Often there are very
tight constraints on changing software and optimum solutions can be
difficult to find. Such constraints make maintenance a challenge; contrast
the development phase, when designers have considerably more freedom in
the type of solution they can adopt.

Software maintenance activities can be classified as:
• corrective;
• perfective;
• adaptive.

Corrective maintenance removes software faults. Corrective
maintenance should be the overriding priority of the software maintenance
team.

Perfective maintenance improves the system without changing its
functionality. The objective of perfective maintenance should be to prevent
failures and optimise the software. This might be done, for example, by
modifying the components that have the highest failure rate, or components
whose performance can be cost-effectively improved [Ref 11].

Adaptive maintenance modifies the software to keep it up to date
with its environment. Users, hardware platforms and other systems all make
up the environment of a software system. Adaptive maintenance may be
needed because of changes in the user requirements, changes in the target
platform, or changes in external interfaces.

4 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

Minor adaptive changes (e.g. addition of a new command
parameter) may be handled by the normal maintenance process. Major
adaptive changes (e.g. addition of costly new user requirements, or porting
the software to a new platform) should be carried out as a separate
development project (See Chapter 5).

The operations and maintenance phase starts when the initiator
provisionally accepts the software. The phase ends when the software is
taken out of use. The phase is divided into two periods by the final
acceptance milestone (OM03). All the acceptance tests must have been
successfully completed before final acceptance (OM02).

There must be a maintenance organisation for every software
product in operational use (OM04). The developers are responsible for
software maintenance and user support until final acceptance.
Responsibility for these activities passes to a maintenance team upon final
acceptance. The software project manager leads the developers. Similarly,
the 'software maintenance manager' leads the maintenance team. Software
project managers and software maintenance managers are collectively
called 'software managers'.

The mandatory inputs to the operations and maintenance phase are
the provisionally accepted software system, the statement of provisional
acceptance and the Software Transfer Document (STD). Some of the plans
from the development phases may also be input.

The developer writes the Project History Document (PHD) during the
warranty period. This gives an overview of the whole project and a summary
account of the problems and performance of the software during the
warranty period. This document should be input to the Software Review
Board (SRB) that recommends about final acceptance. The PHD is delivered
to the initiator at final acceptance (OM10).

Before final acceptance, the activities of the development team are
controlled by the SPMP/TR (OM01). The development team will normally
continue to use the SCMP, SVVP and SQAP from the earlier phases. After
final acceptance, the maintenance team works according to its own plans.
The new plans may reuse plans that the development team made, if
appropriate. The maintenance team may have a different configuration
management system, for example, but continue to employ the test tools and
test software used by the developers.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 5
THE OPERATIONS AND MAINTENANCE PHASE

Operate

Software

Update

PHD

Final

Acceptance

Software

System SPR

STD

Statement

of final

acceptance

PHD

CIs

SRB

users

project

SPMP

SCMP

SVVP

SQAP

Maintain

Software

developers

SCR, SMR

manager

Figure 2.1A: OM phase activities before final acceptance

Operate

Software

Update

PHD

Software

System SPR

PHD

CIsusers

software manager

SPMP

SCMP

SVVP

SQAP

Maintain

Software

SMR

maint. team

SCR

PHD

Updated

Figure 2.1B: OM phase activities after final acceptance

6 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

Figures 2.1A and 2.1B show the activities, inputs and outputs of the
phase, and the information flows between them. The arrows into the bottom
of each box indicate the group responsible for each activity. The following
sections discuss in more detail the activities of operate software, maintain
software, update Project History Document and final acceptance.

2.2 OPERATE SOFTWARE

The way software is operated varies from system to system and
therefore cannot be discussed in this guide. However there are two activities
that occur during most software operations:
• user support;
• problem reporting.

These activities are discussed in the following sections.

2.2.1 User support

There are two types of user:
• end user;
• operator.

An 'end user' utilises the products or services of a system. An
'operator' controls and monitors the hardware and software of a system. A
user may be an end user, an operator, or both.

User support activities include:
• training users to operate the software and understand the products and

services;
• providing direct assistance during operations;
• set-up;
• data management.

 Users should receive training. The amount of training depends upon
the experience of the users and the complexity or novelty of the software.
The training may range from allowing the users time to read the SUM and
familiarise themselves with the software, to a course provided by experts,
possibly from the development or maintenance teams.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 7
THE OPERATIONS AND MAINTENANCE PHASE

 Software User Manuals and training are often insufficient to enable
users to operate the software in all situations and deal with problems. Users
may require:
 • direct assistance from experts in the development or maintenance

teams;
 • help desks.

 Full-time direct assistance from experts is normally required to
support critical activities. Part-time direct assistance from experts is often
sufficient for software that is not critical and has few users.

 When the number of users becomes too large for the experts to be
able to combine user support activities with their software maintenance
activities, a help desk is normally established to:
 • provide users with advice, news and other information about the

software;
 • receive problem reports and decide how they should be handled.

 While help desk staff do not need to have expert knowledge of the
design and code, they should have detailed knowledge of how to operate it
and how to solve simple problems.

 The set-up of a software system may be a user support activity
when the software set-up is complex, shared by multiple users, or requires
experts to change it to minimise the risk of error.

 Data management is a common user support activity, and may
include:
 • configuring data files for users;
 • managing disk storage resources;
 • backup and archiving.

 2.2.2 Problem reporting

 Users should document problems in Software Problem Reports
(SPRs). These should be genuine problems that the user believes lie in the
software, not problems arising from unfamiliarity with it.

8 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 Each SPR should report one and only one problem and contain:
 • software configuration item title or name;
 • software configuration item version or release number;
 • priority of the problem with respect to other problems;
 • a description of the problem;
 • operating environment;
 • recommended solution (if possible).

 The priority of a problem has two dimensions:
 • criticality (critical/non-critical);
 • urgency (urgent/routine).

 The person reporting the problem should decide whether it is critical
or non-critical. A problem is critical if the software or an essential feature of
the software is unavailable. The person should also decide whether the
solution is required as soon as possible (urgent) or when the Software
Review Board decides is best (routine).

 Users should attempt to describe the problem and the operating
environment as accurately as possible to help the software engineers to
reproduce the problem. Printouts and log files may be attached to the
Software Problem Report to assist problem diagnosis.

 Problems may occur because the software does not have specific
capabilities or comply with some constraints. Users should document such
omissions in SPRs, not in a modification to the User Requirements
Document. The URD may be modified at a later stage when and if the
Software Review Board (SRB) approves the new user requirement.

 Figure 2.2 shows the life cycle of a software problem report. An SPR
is prepared and submitted to the maintenance team for diagnosis. The
maintenance team prepares a Software Change Request (SCR) if they
decide that a software change is required to solve the problem. The SPR
and related SCR are then considered at a Software Review Board meeting.

 The Software Review Board decides upon one of four possible
outcomes for the SPR:
 • reject the SPR;
 • update the software based upon the related SCR;

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 9
THE OPERATIONS AND MAINTENANCE PHASE

 • action someone to carry out further diagnosis;
 • close the SPR because the update has been completed.

Prepare

Diagnose

Review

CloseUpdate Reject Action

 Figure 2.2: The life cycle of an SPR

 2.3 MAINTAIN SOFTWARE

 Software maintenance should be a controlled process that ensures
that the software continues to meet the needs of the end user. This process
consists of the following activities:
 • change software;
 • release software;
 • install release
• validate release.

10 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

Change

Software

Install

Release

Release

Software

SCR

SMR

Changed

CIs

SRN

Released

CIs

SPR

STD

SPMP

SCMP

SVVP

SQAP

Software

System

CIs

Validate

Release

Installed

CIs

 Figure 2.3: The software maintenance process

 Figure 2.3 shows the inputs and outputs of each activity, which are
discussed in more detail in the following sections.

 2.3.1 Change Software

 Software change should be governed by a change control process
defined in the Software Configuration Management Plan. All change control
processes should be based upon the code change control process
described in ESA PSS-05-09, Guide to Software Configuration Management
[Ref 4], shown in Figure 2.3.1. Configuration management tools should be
used to control software change. These are described in the Guide to
Software Configuration Management.

 Software change is a four stage process:
 • diagnose problems;
 • review change requests;
 • modify software;
• verify software.

 The following sections describe each stage.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 11
THE OPERATIONS AND MAINTENANCE PHASE

diagnose SCR

review
changes

problems

expert

review board

changed CI

modify
software

developers

SMR

SCR
approved

SPR

controlled CI

maintainers

verify
software

developers
maintainers

changed CI

Figure 2.3.1: The basic change control process

 2.3.1.1 Diagnose Problems

 Software Problem Reports (SPRs) arising from software operations
are collected and assigned to an expert software engineer from the
maintenance team, who examines software configuration items and
diagnoses the cause of the problem. The software engineer may
recommend software changes in a Software Change Request (SCR).

 The steps in problem diagnosis are:
• examine SPR;
• reproduce the problem, if possible;
• examine code and/or documentation;
• identify the fault;
• identify the cause;
• write a Software Change Request, if necessary.

12 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 Examination of code and documentation may require backtracking
from code and Software User Manual through the Detailed Design
Document, the Architectural Design Document, the Software Requirements
Document and ultimately the User Requirements Document.

 Software engineers often diagnose a problem by building a variant
configuration item that:
 • is able to work with debugging tools;
 • contains diagnostic code.

 The software engineers run the variant and attempt to reproduce the
problem and understand why it happened. When they have made a
diagnosis they may insert prototype code to solve the problem. They then
test that the problem does not recur. If it does not, the person responsible
for modifying the software may use the prototype code as a starting point.
The maintenance team should be wary of the first solution that works.

 When the cause of a problem has been found, the software
engineer should request a change to the software to prevent the problem
recurring. Every Software Change Request (SCR) should contain the
following information:
 • software configuration item title or name;
 • software configuration item version or release number;
 • changes required;
 • priority of the request;
 • responsible staff;
 • estimated start date, end date and manpower effort.

 The software engineer provides the first three pieces of information.
The software manager should define the last three.

 The specification of the changes should be detailed enough to allow
management to decide upon their necessity and practicality. The SCR does
not need to contain the detailed design of the change. Any changes
identified by the person who diagnosed the problem, such as marked-up
listings of source code and pages of documentation, should be attached to
the SCR.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 13
THE OPERATIONS AND MAINTENANCE PHASE

 Like software problems, the priority of a software change request
has two dimensions:
 • criticality (critical/non-critical);
 • urgency (urgent/routine).

 The software manager should decide whether the change request is
critical or non-critical. A change is critical if it has a major impact on either
the software behaviour or the maintenance budget. The criticality of a
software change request is evaluated differently from the criticality of a
software problem. For example an SPR may be classified as critical because
an essential feature of the software is not available. The corresponding SCR
may be non-critical because a single line of code is diagnosed as causing
the problem, and this can be easily modified.

 The software manager should decide whether the change is urgent
or routine. A change is urgent if it has to be implemented and released to
the user as soon as possible. Routine changes are released in convenient
groups according to the release schedule in the software project
management plan. The software manager normally gives the same urgency
rating as the user, although he or she has the right to award a different
rating.

 The SCR is normally presented as a form, but it may be a
document. A change request document should contain sections on:
 • user requirements document changes;
 • software requirements document changes;
 • architectural design document changes;
 • detailed design document changes;
 • software project management plan update;
 • software verification and validation plan for the change;
 • software quality assurance plan for the change.

 Each section should include or reference the corresponding
development documents as appropriate. For example a change to the code
to remedy a detailed design fault might:
 • put 'no change' in the URD, SRD and ADD change sections;
 • contain a new version of the DDD component description;

14 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 • contain a listing of the code with a prototype modification suggested by
the expert who made the change request;

 • contain a unit test design, unit test case and unit test procedure for
verifying the code change;

 • identify the integration, system and acceptance test cases that should
be rerun;

 • contain a work package description for the change;
 • identify the software release that will contain the change.

 Investigation of a software problem may reveal the need to
implement a temporary 'workaround' solution to a problem pending the
implementation of a complete solution. The workaround and the complete
solution should have a separate SCR.

 2.3.1.2 Review Changes

 The Software Review Board (SRB) must authorise all changes to the
software (OM08). The SRB should consist of people who have sufficient
authority to resolve any problems with the software. The software manager
and software quality assurance engineer should always be members. Users
are normally members unless the software is part of a larger system. In this
case the system manager is a member, and represents the interests of the
whole system and the users.

 The SRB should delegate responsibility for filtering SPRs and SCRs
to the software manager. The order of filtering is:
 • criticality (critical/non-critical);
 • urgency (urgent/routine).

 The decision tree shown in Figure 2.3.1.2 illustrates the four
possible combinations of urgency and criticality, and defines what action
should be taken.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 15
THE OPERATIONS AND MAINTENANCE PHASE

Urgent

Routine

Critical

Non-critical

Urgent

Routine

Software Manager decides, SRB confirms

SRB decides

Software Manager decides

Software Manager decides

 Figure 2.3.1.2: SPR and SCR filtering

 The three possible actions are:
 1. critical and urgent: the software manager decides upon the

implementation of the change and passes the SCR and associated
SPRs to the SRB for confirmation;

 2. critical and routine: the software manager passes the SCR and
associated SPRs to the SRB for review and decision;

 3. non-critical: the software manager decides upon the implementation of
the change and passes the SCR and associated SPRs to the SRB for
information.

 Software Review Board meetings should use the technical review
process described in ESA PSS-05-10 Guide to Software Verification and
Validation [Ref 5], with the following modifications:
 • the objective of an SRB review is to decide what software changes will

be implemented;
 • the inputs to the SRB review are the SCRs, SPRs and attachments such

as part of a document, a source code listing, a program traceback or a
log file;

 • the preparation activity is to examine the SPRs and SCRs, not RIDs;
 • SRB review meetings are concerned with the SPRs and SCRs, not RIDs,

and follow the typical agenda described below.

16 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 A typical SRB review meeting agenda consists of:
 1. introduction;
 2. review actions from the previous meeting;
 3. review of the SPR and SCR criticality and urgency classification;
 4. review of the critical SPRs;
 5. review of the critical SCRs;
 6. decision on the SPRs and SCRs;
 7. conclusion.

 Actions from the previous meeting may have included software
change requests. The SRB should close SPRs that are associated with
satisfied change requests. Every closed SPR must have one or more
associated Software Modification Reports (SMRs) that describe what has
been done to solve the problem.

 The criticality and urgency of SPRs and SCRs should be reviewed.
Members may request that they be reclassified.

 Critical SPRs that have not been closed are then discussed. The
discussion should confine itself to describing the seriousness and extent of
the problem. The Software Review Board decisions should be one of
'update', 'action or 'reject' (See Figure 2.2). The status should become
'update' when the SRB is satisfied that the problem exists and requires a
change to the software. The status should become 'action' when there is no
satisfactory diagnosis. The status should become 'reject' if the SRB decides
that the problem does not exist or that no update or action is necessary.

 Critical SCRs are then discussed. The discussion should confine
itself to reviewing the effects of the requested changes and the risks
involved. Detailed design issues should be avoided. The SRB may discuss
the recommendations of the software manager as to:
 • who should be the responsible staff;
 • how much effort should be allocated;
 • when the changes should be implemented and released.

 Any part of the SCR may be modified by the SRB. After discussion,
the SRB should decide upon whether to approve the change request.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 17
THE OPERATIONS AND MAINTENANCE PHASE

 2.3.1.3 Modify Software

 When the software change request has been approved, the
maintenance team implement the change. The remaining tasks are to:
 • modify the documents and code;
 • review the modified documents and code;
 • test the modified code.

 The outputs of these tasks are a Software Modification Report
(SMR) and modified configuration items. The SMR defines the:
 • names of configuration items that have been modified;
 • version or release numbers of the modified configuration items;
 • changes that have been implemented;
 • actual start date, end date and manpower effort.

 Attachments to the SMR should include unit, integration and system
test results, as appropriate.

 Software systems can be ruined by poor maintenance, and people
responsible for it should:
 • evaluate the effects of every change;
 • verify all software modifications thoroughly;
 • keep documentation up to date.

 2.3.1.3.1 Evaluating the effects of a change

 Software engineers should evaluate the effect of a modification on:
 a. performance;
 b. resource consumption.
 c. cohesion;
 d. coupling;
 e. complexity;
 f. consistency;
 g. portability;
 h. reliability;
 i. maintainability;

18 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 j. safety;
 k. security.

 The effect of changes may be evaluated with the aid of reverse
engineering tools and librarian tools. Reverse engineering tools can identify
the modules affected by a change at program design level (e.g. identify
each module that uses a particular global variable). Librarian tools with
cross reference facilities can track dependencies at the source file level (e.g.
identify every file that includes a specific file).

 There is often more than one way of changing the software to solve
a problem, and software engineers should examine the options, compare
their effects on the software, and select the best solution. The following
sections provide guidance on the evaluation of the software in terms of the
attributes listed above.

 a. Performance

 Performance requirements specify the capacity and speed of the
operations the software has to perform. Design specifications may specify
how fast a component has to execute.

 The effects of a change on software performance should be
predicted and later measured in tests. Performance analysis tools may
assist measurement. Prototyping may be useful.

 b. Resource Consumption

 Resource requirements specify the maximum amount of computer
resources the software can use. Design specifications may specify the
maximum resources available.

 The effects of a change on resource consumption should be
predicted when it is designed and later measured in tests. Performance
analysis tools and system monitoring tools should be used to measure
resource consumption. Again, prototyping may be useful.

 c. Cohesion

 Cohesion measures the degree to which the activities within a
component relate to one another. The cohesion of a software component
should not be reduced by a change. Cohesion effects should be evaluated
when changes are designed.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 19
THE OPERATIONS AND MAINTENANCE PHASE

 ESA PSS-05-04 Guide to the Software Architectural Design Phase
identifies seven types of cohesion ranging from functional (good) to
coincidental (bad) [Ref 2]. This scale can be used to evaluate the effect of a
change on the cohesion of a software component.

 d. Coupling

 Coupling measures the interdependence of two or more
components. Changes that increase coupling should be avoided, as they
reduce information hiding. Coupling effects should be evaluated when
changes are designed.

 ESA PSS-05-04 Guide to the Software Architectural Design Phase
identifies five types of coupling ranging from 'data coupling' (good) to
'content coupling' (bad) [Ref 2]. This scale can be used to evaluate the
effect of a change on the coupling of a software component.

 e. Complexity

 During the operations and maintenance phase the complexity of
software naturally tends to grow because its control structures have to be
extended to meet new requirements [Ref 12]. Software engineers should
contain this natural growth of complexity because more complex software
requires more testing, and more testing requires more effort. Eventually
changes become infeasible because they require more effort than is
available to implement them. Reduced complexity means greater reliability
and maintainability.

 Software complexity can be measured by several metrics, the best
known metric being cyclomatic complexity [Ref 8]. Procedures for
measuring cyclomatic complexity and other important metrics are contained
in ESA PSS-05-04 Guide to the Software Architectural Design Phase and
ESA PSS-05-10, Guide to Software Verification and Validation [Ref 2, 5].
McCabe has proposed an 'essential complexity metric' for measuring the
distortion of the control structure of a module caused by a software change
[Ref 13].

 f. Consistency

 Coding standards define the style in which a programming
language should be used. They may enforce or ban the use of language
features and define rules for layout and presentation. Changes to software
should conform to the coding standards and should be seamless

20 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 Polymorphism means that a function will perform the same
operation on a variety of data types. Programmers extending the range of
data types can easily create inconsistent variations of the same function.
This can cause a polymorphic function to behave in unexpected ways.
Programmers modifying a polymorphic function should fully understand
what the variations of the function do.

 g. Portability

 Portability is measured by the ease of moving software from one
environment to another. Portability can be achieved by adhering to
language and coding standards. A common way to make software portable
is to encapsulate platform-specific code in 'interface modules'. Only the
interface modules need to be modified when the software is ported.

 Software engineers should evaluate the effect of a modification on
the portability of the software when it is designed. Changes that reduce
portability should be avoided.

 h. Reliability

 Reliability is most commonly measured by the Mean Time Between
Failures (MTBF). Changes that reduce reliability should be avoided.

 Changes that introduce defects into the software make it less
reliable. The software verification process aims to detect and remove
defects (see Section 2.3.1.). Walkthroughs and inspections should be used
to verify that defects are not introduced when the change is designed. Tests
should be used to verify that no defects have been introduced by the
change after it has been implemented.

 The effect of a modification on software reliability can be estimated
indirectly by measuring its effect on the complexity of the software. This
effect can be measured when the change is designed.

 Reliability can be reduced by reusing components that have not
been developed to the same standards as the rest of the software. Software
engineers should find out how reliable a software component is before
reusing it.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 21
THE OPERATIONS AND MAINTENANCE PHASE

 i. Maintainability

 Maintainability measures the ease with which software can be
maintained. The most common maintainability metric is 'Mean Time To
Repair'. Changes that make software less maintainable should be avoided.

 Examples of changes that make software less maintainable are
those that:
 • violate coding standards;
 • reduce cohesion;
 • increase coupling;
 • increase essential complexity [Ref 13].

 The costs and benefits of changes that make software more
maintainable should be evaluated before such changes are made. All
modified code must be tested, and the cost of retesting the new code may
outweigh the reduced effort required to make future changes.

 j. Safety

 Changes to the software should not endanger people or property
during operations or following a failure. The effect on the safety of the
software should first be evaluated when the change is designed and later
during the verification process. The behaviour of the software after a failure
should be analysed from the safety point of view.

 k. Security

 Changes to the software should not expose the system to threats to
its confidentiality, integrity and availability. The effect of a change on the
security of the software should first be evaluated when the change is
designed and later during the verification process.

 2.3.1.3.2 Keeping documentation up to date

 Consistency between code and documentation must be maintained
(OM06). This is achieved by:
 • thorough analysis of the impact of every change before it is made, to

ensure that no inconsistencies are introduced;
 • concurrent update of code and documentation;
 • verification of the changes by peer review or independent review.

22 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 Tools for deriving detailed design information from source code are
invaluable for keeping documentation up to date. The detailed design
component specification is placed in the module header. When making a
change, programmers:
 • modify the detailed design specification in the header;
 • modify the module code;
 • compile the module;
 • review the module modifications;
 • unit test the module;
 • run a tool to derive the corresponding detailed design document

section.

 Programmers should use the traceability matrices to check for
consistency between the code, DDD, ADD, SRD and URD. Traceability
matrices are important navigational aids and should be kept up to date.
Tools that support traceability are very useful in the maintenance phase.

 2.3.1.4 Verify software modifications

 Software modifications should be verified by:
 a. review of the detailed design and code;
 b. testing.

 a. Detailed design and code reviews

 The detailed design and code of all changes should be reviewed
before they are tested. These reviews should be distinguished from earlier
reviews done by the software manager or Software Review Board (SRB) that
examine and approve the change request. The detailed design and code
are normally not available when the change request is approved.

 The detailed design and code of all changes should be examined
by someone other than the software engineer who implemented them. The
walkthrough or inspection process should be used [Ref 5].

 b. Tests

 Modified software must be retested before release (SCM39). This is
normally done by:
 • unit, integration and system testing each change;

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 23
THE OPERATIONS AND MAINTENANCE PHASE

 • running regression tests at unit, integration and system level to verify
that there are no side-effects.

 Changes that do not alter the control flow should be tested by
rerunning the white box tests that execute the part of the software that
changed. Changes that do alter the control flow should be tested by
designing white box tests to execute every new branch in the control flow
that has been created. Black box tests should be designed to verify any new
functionality.

 Ideally system tests should be run after each change. This may be a
very costly exercise for a large system, and an alternative less costly
approach often adopted for large systems is to accumulate changes and
then run the system tests (including regression tests) just before release.
The disadvantage of this approach is that it may be difficult to identify which
change, if any, is the cause of a problem in the system tests.

 2.3.2 Release Software

 Changed configuration items are made available to users through
the software release process. This consists of:
 • defining the release;
 • documenting the release;
 • auditing the release;
 • delivering the release.

 2.3.2.1 Define release

 Software managers should define the content and timing of a
software release according to the needs of users. This means that:
 • solutions to urgent problems are released as soon as possible only to

the people experiencing the problem, or who are likely to experience the
problem;

 • other changes are released when the users are ready to accommodate
them.

 Software managers, in consultation with the Software Review Board,
should allocate changes to one of three types of release:
 • major release;
 • minor release;

24 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 • emergency release (also called a ‘patch’).

 Table 2.3.2.1 shows how they differ according to whether:
 • adaptive changes have been made;
 • perfective changes have been made;
 • corrective changes have been made;
 • all or selected software configuration items are included in the release;
 • all or selected users will receive the release.

 Adaptive
Changes

 Perfective
Changes

 Corrective
Changes

 CIs Users

 Major
Release

 Yes Yes Yes All All

 Minor
Release

 Small Yes Yes All All

 Emergency
Release

 No No Yes Selected Selected

 Table 2.3.2.1: Major, minor and emergency releases

 The purpose of a major release of a software system is to provide
new capabilities. These require adaptive changes. Major releases also
correct outstanding faults and perfect the existing software. Operations may
have to be interrupted for some time after a major release has been installed
because training is required. Major releases should therefore not be made
too frequently because of the disruption they can cause. A typical time
interval between major releases is one year. Projects using evolutionary and
incremental delivery life cycle approaches would normally make a major
release in each transfer phase.

 The purpose of a minor release is to provide corrections to a group
of problems. Some low-risk perfective maintenance changes may be
included. A minor release of a software system may also provide small
extensions to existing capabilities. Such changes can be easily assimilated
by users without training.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 25
THE OPERATIONS AND MAINTENANCE PHASE

 The frequency of minor releases depends upon:
 • the rate at which software problems are reported;
 • the urgency of solving the software problems.

 The purpose of an emergency release is to get a modification to the
users who need it as fast as possible. Only the configuration items directly
affected by the fault are released. Changes are nearly always corrective.

 2.3.2.2 Document release

 Every software release must be accompanied by a Software
Release Note (SRN) (SCM14). Software Release Notes should describe the:

 • software item title/name;

 • software item version/release number;

 • changes in the release;

 • list of configuration items included in the release;

 • installation instructions.

 Forms are used for simple releases and documents for complex
releases.

 2.3.2.2.1 Release number

 The SRN should define the version number of the release. The
structure of the version number should reflect the number of different types
of releases used. A common structure used is two or three integers
separated by a full stop:

 major release number.minor release number[.emergency release number]

 The square brackets indicate that the emergency release number is
optional because it is only included when it is not zero. When any release
number is incremented the succeeding numbers are set to zero.

26 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

 2.3.2.2.2 Changes in the release

 This section of the SRN should list all the changes in the release.
For each change:
 • give a paragraph summarising the effects that the users will see

resulting from the change;
 • enumerate the related SPRs and SCRs (SCM36).

 2.3.2.2.3 List of configuration items included in the release

 This section of the SRN should list the configuration identifiers of all
the configuration items in the release.

 2.3.2.2.4 Installation instructions

 This section of the SRN should describe how to install the release.
This is normally done by referencing the installation instructions in the
Software User Manual1, or providing updated instructions, or both.

 2.3.2.3 Audit release

 Functional and physical audits shall be performed before the
release of the software (SVV03). The purpose of the audits is to verify that all
the necessary software configuration items are present, consistent and
correct.

 A functional audit verifies that the development of a configuration
item has been completed satisfactorily, that the item has achieved the
performance and functional characteristics specified in the software
requirements and design documents [Ref 7]. This is normally done by
checking the test reports for the software release. A functional audit also
verifies that the operational and support documents are complete and
satisfactory.

 A physical audit verifies that an as-built configuration conforms to its
documentation. This is done by checking that:
 • all the configuration items listed in the SRN are actually present;
 • documentation and code in a software release are consistent (SCM37).

 1 In ESA PSS-05-0 Installation instructions are placed in the STD. The SUM is normally a more suitable place to put the installation

instructions.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 27
THE OPERATIONS AND MAINTENANCE PHASE

 2.3.2.4 Deliver release

 The software can be delivered when the audits have been done. The
maintenance team is responsible for copying the software onto the release
media, packaging the media with the software documentation and delivering
the package.

 The maintenance team must archive every release (SCM38). This is
best done by keeping a copy of the delivered package. Although users may
wish to retain old releases for reference, the responsibility for retaining a
copy of every release lies with the maintenance team.

 2.3.3 Install Release

 Upon delivery, the contents of the release are checked against the
configuration item list in the Software Release Note (SRN) and then the
software is installed. The installation procedures are also described or
identified in the SRN.

 Installation should be supported by tools that
 • automate the installation process as much as possible;
 • issue simple and clear instructions;
 • reuse configuration information from the existing system and not require

users to reenter it;
 • make minimal changes to the system configuration (e.g. modifying the

CONFIG.SYS and AUTOEXEC.BAT files of a PC);
 • always get permission before making any changes to the system

configuration;

 The installation process should be reversible, so that rollback of the
system to the state before the installation process was started is always
possible. One way to do this is to make a backup copy of the existing
system before starting the installation.

 The installation software should remove obsolete configuration
items from the directories where the new version of the system is installed.

 2.3.4 Validate release

 After installation, users should run some or all of the acceptance
tests to validate the software. The acceptance test specification should have

28 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

been updated to include tests of any new user requirements that have been
implemented.

 2.4 UPDATE PROJECT HISTORY DOCUMENT

 The purpose of the Project History Document (PHD) is to provide a
summary critical account of the project. The PHD should:
 • describe the objectives of the project;
 • summarise how the project was managed;
 • state the cost of the project and compare it with predictions;
 • discuss how the standards were applied;
 • describe the performance of the system in OM phase;
 • describe any lessons learned.

 The benefits of the PHD are:
 • the maintenance team is informed about what the development team

did, so they can avoid repeating mistakes or trying out inappropriate
solutions;

 • the maintenance team are told how well the system performs, as they
may have to make good any shortfall;

 • managers of future projects will know how much a similar project is
likely to cost, and problems and pitfalls they are likely to experience.

 The software manager should write the PHD. Information should be
collected throughout the project. Work on the PHD should start early in the
project, with updates at every major milestone. Detailed guidance on writing
the PHD is provided in chapter 4.

 2.5 FINAL ACCEPTANCE

 A review of the software should be held at the end of the warranty
period in order to decide whether the software is ready for final acceptance.
All the acceptance tests must have been completed before the software can
be finally accepted (OM02).

 The review team should consist of the Software Review Board (SRB)
members. The responsibilities and constitution of the Software Review

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 29
THE OPERATIONS AND MAINTENANCE PHASE

Board are defined in ESA PSS-05-09 'Guide to Software Configuration
Management' Section 2.2.1.3 [Ref 4].

 The software review should be a formal technical review. The
procedures for a technical review are described in Section 2.3.1 of ESA PSS-
05-10, 'Guide to Software Verification and Validation' [Ref 5].

 The final acceptance review meeting may coincide with an ordinary
SRB meeting. The decision upon final acceptance is added to the agenda
described in Section 2.3.1.2.

 Inputs to the review are the:
 • Project History Document (PHD);
 • results of acceptance tests held over to the OM phase;
 • Software Problem Reports made during the OM phase;
 • Software Change Requests made during the OM phase;
 • Software Modification Reports made during the OM phase.

 The Software Review Board reviews these inputs and recommends,
to the initiator, whether the software can be finally accepted.

 The SRB should evaluate the degree of compliance of the software
with the user requirements by considering the number and nature of:
 • acceptance test cases failed;
 • acceptance tests cases not attempted or completed;
 • critical software problems reported;
 • critical software problems not solved.

 Solution of a problem means that a change request has been
approved, modification has been made, and all tests repeated and passed.

 The number of test cases, critical software problems and non-
critical software problems should be evaluated for the whole system and for
each subsystem. The SRB might, for example, decide that some
subsystems are acceptable and others are not.

 The SRB should study the trends in the number of critical software
problems reported and solved. Although there are likely to be 'spikes' in the
trend charts associated with software releases, there should be a downward

30 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE OPERATIONS AND MAINTENANCE PHASE

trend in the number of critical problems during the OM phase. An upward
trend should be cause for concern.

 Sufficient data should have accumulated to evaluate the Mean Time
Between Failures (MTBF) and Mean Time To Repair (MTTR). The MTBF may
be estimated by dividing the total number of critical software problems
raised during the phase by the total time spent operating the software during
the phase. The MTTR may be estimated by averaging the difference
between the start and end dates of the modifications completed.

 If the SRB decides that the degree of compliance of the software
with the user requirements is acceptable, it should recommend to the
initiator that the software be finally accepted.

 The statement of final acceptance is produced by the initiator, on
behalf of the users, and sent to the developer (OM09). The finally accepted
software system consists of one or more sets of documentation, source,
object and executable code corresponding to the current versions and
releases of the product.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 31
TOOLS FOR SOFTWARE MAINTENANCE

 CHAPTER 3
 TOOLS FOR SOFTWARE MAINTENANCE

 3.1 INTRODUCTION

 Tools used during software development will continue to be used
during the operations and maintenance phase. New versions of the tools
may become available, or a tool may become unsupported and require
replacement. Tools may be acquired to support new activities, or to support
activities that previously took place without them.

 The reader should refer to the appropriate guides for the tools that
support:
 • user requirements definition;
 • software requirements definition;
 • architectural design;
 • detailed design and production;
 • transfer;
 • software project management;
 • software configuration management;
 • software verification and validation;
 • software quality assurance.

 This chapter is concerned with the tools that are normally used for
the first time in the life cycle during the operations and maintenance phase.
These tools are:
 • navigation tools;
• code improvement tools;
 • reverse engineering tools.

 3.2 NAVIGATION TOOLS

 Navigation tools enable software engineers to find quickly and easily
the parts of the software that they are interested in. Typical capabilities are:
 • identification of where variables are used;

32 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
TOOLS FOR SOFTWARE MAINTENANCE

 • identification of the modules that use a module;
 • display of the call tree;
 • display of data structures.

 Knowledge of where variables and modules are used is critical to
understanding the effect of a change. Display of the call tree and data
structures supports understanding of the control and data flow.

 In addition, navigation tools for object-oriented software need to be
able to:
 • distinguish which meaning of an overloaded symbol is implied;
 • support the location of inherited attributes and functions.

 The maintenance of object-oriented programs is an active research
area [Ref 14, 15]. In particular, the behaviour of a polymorphic function can
only be known at runtime when argument types are known. This makes it
difficult to understand what the code will do by means of static analysis and
inspection. Dynamic analysis of the running program may be the only way to
understand what it is doing.

 3.3 CODE IMPROVEMENT TOOLS

 Code improvement tools may:
• reformat source code;
• restructure source code.

 Code reformatters, also known as 'pretty printers', read source code
and generate output with improved layout and presentation. They can be
very useful for converting old code to the style of a new coding standard.

 Code restructuring tools read source code and make it more
structured, reducing the control flow constructs as far as possible to only
sequence, selection and iteration.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 33
TOOLS FOR SOFTWARE MAINTENANCE

 3.4 REVERSE ENGINEERING TOOLS

 Reverse engineering tools process code to produce another type of
software item. They may for example:
• generate source code from object code;
 • recover designs from source code.

 Decompilers translate object code back to source code. Some
debuggers allow software engineers to view the source code alongside the
object code. Decompilation capabilities are sometimes useful for
diagnosing compiler faults, e.g. erroneous optimisations.

 Tools that recover designs from source code examine module
dependencies and represent them in terms of a design method such as
Yourdon. Tools are available that can generate structure charts from C code
for example. These reverse engineering tools may be very useful when
documentation of code is non-existent or out of date.

34 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
TOOLS FOR SOFTWARE MAINTENANCE

 This page is intentionally left blank.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 35
THE PROJECT HISTORY DOCUMENT

 CHAPTER 4
 THE PROJECT HISTORY DOCUMENT

 4.1 INTRODUCTION

 The Project History Document (PHD) summarises the main events
and the outcome of the project. The software manager should collect
appropriate information, summarise it, and insert it in the PHD phase-by-
phase as the project proceeds. Much of the information will already exist in
earlier plans and reports. When final acceptance is near, the software
manager should update the document taking into account what has
happened since the start of the operations and maintenance phase.

 4.2 STYLE

 The Project History Document should be plain, concise, clear and
consistent.

 4.3 EVOLUTION

 After delivery, the section of the Project History Document on the
performance of the software in the OM phase should be updated by the
maintenance team at regular intervals (e.g. annually).

 4.4 RESPONSIBILITY

 The software project manager is responsible for the production of
the Project History Document. The software maintenance manager is
responsible for the production of subsequent issues.

 4.5 MEDIUM

 The Project History Document is normally a paper document.

 4.6 CONTENT

 ESA PSS-05-0 recommends the following table of contents for the
Project History Document.

36 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE PROJECT HISTORY DOCUMENT

 1 Description of the project

 2 Management of the project
 2.1 Contractual approach
 2.2 Project organisation
 2.3 Methods and tools2

 2.4 Planning

 3 Software Production
 3.1 Product size3

 3.2 Documentation
 3.3 Effort4
 3.4 Computer resources
 3.5 Productivity5

 4 Quality Assurance Review

 5 Financial Review

 6 Conclusions

 7 Performance of the system in OM phase

 4.6.1 PHD/1 DESCRIPTION OF THE PROJECT

 This section should:
 • describe the objectives of the project;
 • identify the initiator, developer and users;
 • identify the primary deliverables;
 • state the size of the software and the development effort;
 • describe the life cycle approach;
 • state the actual dates of all major milestones.

 Information that appears in later parts of the document may be
summarised in this section.

 2 In ESA PSS-05-0 this section is called “Methods used”.
 3 In ESA PSS-05-0 this section is called “Estimated vs. actual amount of code produced”
 4 In ESA PSS-05-0 this section is called “Estimated vs. actual effort”
 5 In ESA PSS-05-0 this section is called “Analysis of productivity factors”

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 37
THE PROJECT HISTORY DOCUMENT

 Critical decisions, for example changes in objectives, should be
clearly identified and explained.

 4.6.2 PHD/2 MANAGEMENT OF THE PROJECT

 4.6.2.1 PHD/2.1 Contractual approach

 This section should reference the contract made (if any) between
initiator's organisation and the development organisation.

 This section should state the type of contract (e.g. fixed price, time
and materials).

 4.6.2.2 PHD/2.2 Project organisation

 This section should describe the:
 • internal organisation of the project;
 • external interfaces of the project.

 The description of the organisation should define for each role:
 • major responsibilities;
 • number of staff.

 If the organisation and interfaces changed from phase to phase,
this section describes the organisation and interfaces in each phase. If the
number of staff varied within a phase, the staffing profile should be
described.

 4.6.2.3 PHD/2.3 Methods and tools

 This section should identify the methods used in the project, phase
by phase. The methods should be referenced. This section should not
describe the rules and procedures of the methods, but critically discuss
them from the point of view of the project. Aspects to consider are:
 • training requirements.
 • applicability.

 Any tools used to support the methods should be identified and the
quality of the tools discussed, in particular:
 • degree of support for the method;
 • training requirements;

38 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE PROJECT HISTORY DOCUMENT

 • reliability;
 • ease of integration with other tools;
 • whether the benefits of the tools outweighed the costs.

 4.6.2.4 PHD/2.4 Planning

 This section should summarise the project plan by producing for
each phase the:
 • initial work breakdown structure (but not the work package

descriptions);
• list of work packages added or deleted;
 • Gantt chart showing the predicted start and end dates of each activity;
 • Gantt chart showing the actual start and end dates of each activity;
 • Milestone trend charts showing the movement (if any) of major

milestones during the phase.

 4.6.3 PHD/3 SOFTWARE PRODUCTION

 4.6.3.1 PHD/3.1 Product size

 This section should state the number of user requirements and
software requirements.

 This section should state the number of subsystems, tasks or
programs in the architectural design.

 This section should state the amount of code, both for the whole
system and for each subsystem:
 • predicted at the end of the AD phase;
 • produced by the end of the TR phase;
 • produced by final acceptance.

 The actual amount of code produced should be specified in terms
of the number of:
 • lines of code;
 • modules.

 This section should make clear the rules used to define a line of
code. Comment lines are not usually counted as lines of code. Historically,

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 39
THE PROJECT HISTORY DOCUMENT

continuation lines have been counted as separate lines of code, but it may
be more meaningful to ignore them and count each complete statement as
one line of code. Non-executable statements (e.g. data declarations) are
also normally counted as lines of code.

 4.6.3.2 PHD/3.2 Documentation

 This section should identify each document produced and state for
each document the number of pages and words.

 These values should be summed to define the total amount of
documentation produced.

 4.6.3.3 PHD/3.3 Effort

 This section should state the estimated and actual effort required for
each work package. The unit should be man-hours, man-days or man-
months. Significant differences between the estimated and actual effort
should be explained.

 Values should be summed to give the total amount of effort required
for all activities in:
 • each of the SR, AD, DD and TR phases;
 • the whole development (i.e. sum of the SR, AD, DD and TR phases);
 • OM phase.

 4.6.3.4 PHD/3.4 Computer resources

 This section should state the estimated and actual hardware,
operating software and ancillary software required to develop and operate
the software. Significant differences between actual and estimated
resources should be explained.

 4.6.3.5 PHD/3.5 Productivity

 This section should state the actual productivity in terms of:
 • total number of lines of code produced divided by the total number of

man-days in the SR, AD, DD and TR phases;
 • total number of lines of code in each subsystem divided by the total

number of man-days expended on that subsystem in the DD phase.

40 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE PROJECT HISTORY DOCUMENT

 The first value gives the global 'productivity' value. The second set of
values gives the productivity of each subsystem.

 Productivity estimates used should also be stated. Significant
differences between the estimated and actual productivity values should be
explained.

 4.6.4 PHD/4 QUALITY ASSURANCE REVIEW

 This section should review the actions taken to achieve quality,
particularly reliability, availability, maintainability and safety.

 This section should summarise and discuss the effort expended
upon activities of:
 • software verification and validation;
 • software quality assurance.

 This section should analyse the quality of all the deliverables by
presenting and discussing the number of:
 • RIDs per document;
 • SPRs and SCRs per month during the DD, TR and OM phases;
 • SPRs and SCRs per subsystem per month during the DD, TR and OM

phases.

 Measurements of Mean Time Between Failures (MTBF) and Mean
Time To Repair (MTTR) should be made in the OM phase. SPR, SCR, SMR
and operations log data may be useful for the calculation. Measurements
should be made at regular intervals (e.g. monthly) and trends monitored.

 Average availability may be calculated from the formula
MTBF/(MTBF+MTTR). In addition, the durations of all periods when the
software was unavailable should be plotted in a histogram to give a picture
of the number and frequency of periods of unavailability.

 All 'safety' incidents where the software caused a hazard to people
or property should be reported. Actions taken to prevent future incidents
should be described.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 41
THE PROJECT HISTORY DOCUMENT

 4.6.5 PHD/5 FINANCIAL REVIEW

 This section is optional. If included, this section should state the
estimate and actual cost of the project. Costs should be divided into labour
costs and non-labour costs.

 4.6.6 PHD/6 CONCLUSIONS

 This section should summarise the lessons learned from the
project.

 4.6.7 PHD/7 PERFORMANCE OF THE SYSTEM IN THE OM PHASE

 This section should summarise in both quantitative and qualitative
terms whether the software performance fell below, achieved or exceeded
the user requirements, the software requirements and the expectations of
the designers.

 Performance requirements in the software requirements document
may be stated in terms of:
 • worst case;
 • nominal;
 • best case value.

 These values, if specified, should be used as benchmarks of
performance.

 The results of any acceptance tests required for final acceptance
should be summarised here.

42 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
THE PROJECT HISTORY DOCUMENT

 This page is intentionally left blank.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 43
LIFE CYCLE MANAGEMENT ACTIVITIES

 CHAPTER 5
 LIFE CYCLE MANAGEMENT ACTIVITIES

 5.1 INTRODUCTION

 Software maintenance is a major activity, and needs to be well
managed to be effective. ESA PSS-05-0 identifies four software
management functions:
 • software project management;
 • software configuration management;
 • software verification and validation;
 • software quality assurance.

 This chapter discusses the planning of these activities in the
operations and maintenance phase.

 The plans formulated by the developer at the end of detailed design
and production phase should be applied, with updates as necessary, by the
development organisation throughout the transfer phase and operations
and maintenance phase until final acceptance.

 ESA PSS-05-0 does not mandate the production of any plans after
final acceptance. However the maintenance organisation will need to have
plans to be effective, and is strongly recommended to:
 • produce its own SPMP and SQAP;
 • reuse and improve the SCMP and SVVP of the development

organisation.

 5.2 SOFTWARE PROJECT MANAGEMENT

 Until final acceptance, OM phase activities that involve the
developer must be carried out according to the plans defined in the
SPMP/TR (OM01). After final acceptance, the software maintenance team
takes over responsibility for the software. It should produce its own SPMP.
Guidelines for producing an SPMP are contained in ESA PSS-05-08, Guide
to Software Project Management [Ref 3].

44 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
LIFE CYCLE MANAGEMENT ACTIVITIES

 In the maintenance phase, both plans should define the:
 • organisation of the staff responsible for software maintenance;
 • work packages;
 • resources;
 • activity schedule.

 5.2.1 Organisation

 A maintenance organisation must be designated for every software
product in operational use (OM04). A software manager should be
appointed for every maintenance organisation. The software manager
should define the roles and responsibilities of the maintenance staff in the
software project management plan. Individuals should be identified with
overall responsibility for:
 • each subsystem;
 • software configuration management;
 • software verification and validation;
 • software quality assurance.

 Major adaptations of the software for new requirements or
environmental changes should be handled by means of the evolutionary life
cycle, in which a development project runs in parallel with operations and
maintenance. Sometimes an evolutionary approach is decided upon at the
start of the project. More commonly the need for such an approach only
becomes apparent near the time the software is first released. Whichever
way the evolutionary idea arises, software managers should organise their
staff accordingly, for example by having separate teams for maintenance
and development. Ideally, software engineers should not work on both
teams at the same time, although the teams may share the same software
manager, software librarian and software quality assurance engineer.

 5.2.2 Work packages

 Work packages should be defined when software change requests
are approved. One work package should produce only one software
modification report, but may cover several change requests and problem
reports.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 45
LIFE CYCLE MANAGEMENT ACTIVITIES

 5.2.3 Resources

 The operations and maintenance phase of software normally
consumes more resources than all the other phases added together.
Studies have shown that large organisations spend about 50% to 70% of
their available effort maintaining existing software [Ref 9, 10]. The high
relative cost of maintenance is due to the influence of several factors such
as the:
 • duration of the operations and maintenance phase being much longer

than all the other phases added together;
 • occurrence of new requirements that could not have been foreseen

when the software was first specified;
 • presence of a large number of faults in most delivered software.

 Resources must be assigned to the maintenance of product until it
is retired (OM07). Software managers must estimate the resources required.
The estimates have two components:
 • predicted non-labour costs;
 • predicted labour costs (i.e. effort).

 The cost of the computer equipment and consumables are the
major non-labour costs. The cost of travel to user sites and the cost of
consumables may have to be considered.

 Labour costs can be assessed from:
 • the level of effort required from the development organisation to support

the software in the transfer phase;
 • the number of user requirements outstanding;
 • past maintenance projects carried out by the organisation;
 • reliability and maintainability data;
 • size of the system;
 • number of subsystems;
 • type of system;
 • availability requirements.

 Software managers should critically analyse this information.
Lehman's laws and a code size method are outlined below to assist the
analysis.

46 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
LIFE CYCLE MANAGEMENT ACTIVITIES

 5.2.3.1 Lehman's Laws

 Lehman and Belady have examined the growth and evolution of
several large software systems and formulated five laws to summarise their
data [Ref 12]. Three of the laws are directly relevant to estimating software
maintenance effort. Simply stated they say:
 • the characteristics of a program are fixed from the time when it is first

designed and coded (the 'law of large program evolution');
 • the rate at which a program develops is approximately constant and

(largely) independent of the resources devoted to its development (the
'law of organisational stability');

 • the incremental change in each release of a system is approximately
constant (the 'law of conservation of familiarity').

 The inherent characteristics of a program, introduced when it is first
designed and coded, will have a fundamental effect on the amount of
maintenance a program needs. Poorly designed software will incur higher
maintenance costs. Removing the inherent design defects amounts to
rewriting the program from scratch.

 The law of diminishing returns applies at a very early stage in
software maintenance. No matter how much effort is applied to maintaining
software, the need to implement and verify modifications one at a time limits
how fast changes can be made. If the mean time to repair the software does
not change when the number of maintenance staff is increased, the
apparent inefficiency is not the fault of the maintenance staff, but is due to
the sequential nature of the work.

 Software maintenance projects settle into a cycle of change.
Modifications are requested, implemented and released to users at regular
intervals. The release rate is constrained by the amount of change users can
cope with.

 In summary, software managers must be careful not to waste effort
by:
 • maintaining software that is unmaintainable;
 • staffing the maintenance team above a saturation threshold;
 • releasing changes too fast for the users to cope with.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 47
LIFE CYCLE MANAGEMENT ACTIVITIES

 5.2.3.2 Code size maintenance cost estimating method

 The effort required to produce L lines of code when the productivity
is P is L divided by P. For example, the addition or modification of 500 lines
of code in a 20000 line of code system that took 1000 man-days to develop
would require 500/(20000/1000) = 25 man days. This example assumes
that the productivity observed in maintenance is the same as that in
development. However productivity in maintenance often falls below that in
development because of the need to assess the cause of a problem and
perform regression tests.

 5.2.4 Activity schedule

 The activity schedule should show the dates of the next releases,
and the work packages that must be completed for each release. This
should be presented in the form of a Gantt chart.

 5.3 SOFTWARE CONFIGURATION MANAGEMENT

 A good configuration management system is essential for effective
software maintenance, not only for the software but also for the tools and
ancillary software items. Software configuration management is discussed in
ESA PSS-05-09 Guide to Software Configuration Management [Ref 4].

 The maintenance team should define and describe its software
configuration management system in a Software Configuration Management
Plan (SCMP). The team may reuse the plan and system made by the
development team, or produce its own. The SCMP must define the
procedures for software modification (OM05). The procedures should be
based upon the change process discussed in Section 2.3.1 The SCMP
should define, step-by-step, how to modify the software, omitting only the
details specific to individual changes.

 5.4 SOFTWARE VERIFICATION AND VALIDATION

 Software verification and validation consumes a significant
proportion of effort during the operations and maintenance phase because
of the need to check that changes not only work correctly, but also that they
have no adverse side effects. Software verification and validation are
discussed in ESA PSS-05-10 Guide to Software Verification and Validation
[Ref 5].

48 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
LIFE CYCLE MANAGEMENT ACTIVITIES

 The maintenance team should reuse the Software Verification and
Validation Plan (SVVP) produced during the development phases. It should
be updated and extended as necessary.

 The Software Review Board (SRB) review procedure should have
been defined in the SVVP/DD. This procedure may need to be updated or
even added to the SVVP either in the TR or OM phase. The SRB should use
the technical review procedure described in ESA PSS-05-10 Guide to
Software Verification and Validation, modified as indicated in Section 2.3.1.2.

 Walkthroughs and inspections of the design and code are not only
useful for training new staff, they are essential for maintaining and improving
quality. Even if software inspection procedures were not used during
development, consideration should be given to introducing them in the
maintenance phase, especially for subsystems that have serious quality
problems. All new procedures should be defined in updates to the SVVP.

 Every change to the software should be examined from the point of
view of:
 • what should be done to verify it;
• whether the SVVP defines the verification procedure.

The SVVP will have to be extended to include new test designs, test
cases and test procedures for:
• tests of new or modified software components;
• regression tests of the software.

Regression tests may be:
• random selections of existing tests;
• targeted selections of existing tests;
• new tests designed to expose adverse side effects.

Targeted tests and new tests depend upon knowledge of the actual
change made. All such regression tests imply a new test design. The first
two reuse test cases and test procedures.

Some of the acceptance tests may require a long period of time to
complete, and are therefore not required for provisional acceptance. The
reports of these tests should be compiled in the operations and
maintenance phase. All the tests must be completed before final
acceptance (OM02).

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) 49
LIFE CYCLE MANAGEMENT ACTIVITIES

5.5 SOFTWARE QUALITY ASSURANCE

Software quality assurance activities must be continued during the
operations and maintenance phase. ESA PSS-05-0 specifies ten mandatory
practices for OM phase. ESA PSS-05-11 Guide to Software Quality
Assurance contains guidelines on how to check that these practices are
carried out [Ref 6]. In particular, staff responsible for SQA should:
• be members of the Software Review Board;
• perform functional and physical audits before each release of the

software;
• monitor quality, reliability, availability, maintainability and safety.

The SQAP/TR should define the SQA activities that the development
team should carry out until final acceptance of the software. The
maintenance organisation that takes over after final acceptance should
examine that plan, consider the current status of the software and then
produce its own plan.

50 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
LIFE CYCLE MANAGEMENT ACTIVITIES

This page is intentionally left blank.

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) A-1
GLOSSARY

APPENDIX A
GLOSSARY

A.1 LIST OF TERMS

Terms used in this document are consistent with ESA PSS-05-0 [Ref
1] and ANSI/IEEE Std 610.12 [Ref 2]. Additional terms not defined in these
standards are listed below.

building

The process of compiling and linking a software system.

development environment

The environment of computer hardware, operating software and external
software in which the software system is developed.

end user

A person who utilises the products or services of a system.

installation

The process of copying a software system into the target environment and
configuring the target environment to make the software system usable.

operator

A person who controls and monitors the hardware and software of a system.

operational environment

The target environment, external software and users.

target environment

The environment of computer hardware, operating software and external
software in which the software system is used.

A-2 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
GLOSSARY

user

A person who utilises the products or services of a system, or a person who
controls and monitors the hardware and software of a system (i.e. an end
user, an operator, or both).

A.2 LIST OF ACRONYMS

AD Architectural Design
ANSI American National Standards Institute
AT Acceptance Test
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
CI Configuration Item
DD Detailed Design and production
OM Operations and Maintenance
PHD Project History Document
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCR Software Change Request
SMR Software Modification Report
SPM Software Project Management
SPMP Software Project Management Plan
SPR Software Problem Report
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SR Software Requirements definition
SRD Software Requirements Document
SRN Software Release Note
STD Software Transfer Document
SVV Software Verification and Validation
SVVP Software Verification and Validation Plan
TR Transfer
UR User Requirements definition
URD User Requirements Document

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) B-1
REFERENCES

APPENDIX B
REFERENCES

1. ESA Software Engineering Standards, ESA PSS-05-0 Issue 2 February
1991.

2. Guide to the Software Architectural Design Phase, ESA PSS-05-04,
January 1992.

3. Guide to Software Project Management, ESA PSS-05-08, Issue 1 Draft,
July 1994

4. Guide to Software Configuration Management, ESA PSS-05-09, Issue 1,
November 1992

5. Guide to Software Verification and Validation, ESA PSS-05-10, Issue 1,
February 1994

6. Guide to Software Quality Assurance, ESA PSS-05-11, Issue 1, July
1993.

7. IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Std 610.12-1990

8. Standard Dictionary of Measures to Produce Reliable Software,
ANSI/IEEE Std 982.1-1988

9. Software Engineering, I. Sommerville, Addison Wesley, Fourth Edition,
1992

10. Software Maintenance Management, B.P. Lientz and E.B. Swanson,
Addison Wesley, 1980

11. Software Evolution, R.J. Arthur, Wiley, 1988

12. Program Evolution. Processes of Software Change, M.M. Lehman and L.
Belady, Academic Press, 1985.

13. Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric, T.J. McCabe, National Bureau of
Standards Special Publications 500-99, 1982.

B-2 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
REFERENCES

14. Maintenance support for object-oriented programs, N.Wilde and R. Huitt,
IEEE Transactions on Software Engineering, Vol 18 Number 12, IEEE
Computer Society, December 1992

15. Support for maintaining object-oriented programs, M. Lejter, S. Meyers
and S.P. Reiss, IEEE Transactions on Software Engineering, Vol 18
Number 12, IEEE Computer Society, December 1992

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) C-1
MANDATORY PRACTICES

APPENDIX C
MANDATORY PRACTICES

This appendix is repeated from ESA PSS-05-0 appendix D.7

OM01 Until final acceptance, OM phase activities that involve the developer shall be
carried out according to the plans defined in the SPMP/TR.

OM02 All the acceptance tests shall have been successfully completed before the
software is finally accepted.

OM03 Even when no contractor is involved, there shall be a final acceptance
milestone to arrange the formal hand-over from software development to
maintenance.

OM04 A maintenance organisation shall be designated for every software product in
operational use.

OM05 Procedures for software modification shall be defined.

OM06 Consistency between code and documentation shall be maintained.

OM07 Resources shall be assigned to a product's maintenance until it is retired.

OM08 The SRB ... shall authorise all modifications to the software.

OM09 The statement of final acceptance shall be produced by the initiator, on behalf
of the users, and sent to the developer.

OM10 The PHD shall be delivered to the initiator after final acceptance.

C-2 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
MANDATORY PRACTICES

This page is intentionally left blank

ESA PSS-05-07 Issue 1 Revision 1 (March 1995) D-1
INDEX

APPENDIX D
INDEX

adaptive maintenance, 3
availability, 40
black box test, 23
change control, 10
code reformatter, 32
code restructuring tool, 32
coding standards, 19
cohesion, 18
complexity, 19
configuration item list, 27
consistency, 19
corrective maintenance, 3
coupling, 19
criticality, 8, 13
cyclomatic complexity, 19
detailed design and code review, 22
emergency release, 25
ESA PSS-05-04, 18, 19
ESA PSS-05-08,, 43
ESA PSS-05-09, 10, 29, 47
ESA PSS-05-10, 19, 29, 47
ESA PSS-05-11, 49
evolutionary life cycle, 44
Gantt chart, 38
inherit, 32
install, 27
labour cost, 45
Lehman's Laws, 46
line of code, 38
maintainability, 20
maintenance, 3
major release, 24
McCabe, 19
mean time between failures, 20, 40
mean time to repair, 20, 40
milestone trend chart, 38
minor release, 24
navigation tool, 32
non-labour cost, 45
object-oriented software, 32
OM01, 4, 43
OM02, 4, 28, 49
OM03, 4
OM04, 4, 44
OM05, 47

OM06, 21
OM07, 45
OM08, 14
OM09, 30
OM10, 4
organisation, 44
overload, 32
patch, 24
perfective maintenance, 3
performance, 18
PHD, 28
polymorphism, 19
portability, 20
pretty printer, 32
productivity, 39
Project History Document, 28, 35
regression test, 48
release, 23
release number, 25
reliability, 20
resource, 45
resource consumption, 18
reverse engineering tool, 33
safety, 21
SCM14, 25
SCM38, 27
SCM39, 22
security, 21
SMR, 17
software maintenance manager, 4
software manager, 4
software modification report, 17
software problem report, 7
software release note, 25
software review board, 14, 28
Software Transfer Document, 4
SPR, 7
SRB, 29
SRN, 25
statement of provisional acceptance, 30
SVV03, 26
test, 22
TR02, 29
traceability matrix, 22
urgency, 8, 13

D-2 ESA PSS-05-07 Issue 1 Revision 1 (March 1995)
INDEX

white box test, 23
work package, 44
workaround, 14

