LORA / LORAWAN TUTORIAL 22

OTAA and Uplink Demonstration **With The Things Network**

**

mobilefish.com

HE THINGS NETWORK

INTRO

- In this tutorial I will demonstrate the Over-The-Air-Activation method.
- In the demonstration I will use my self build LoRa development board to send messages to The Things Network using the MCCI Arduino LMIC library.

DEMONSTRATION SETUP

• Self build LoRa development board, make sure an antenna is connected, see: https://www.mobilefish.com/developer/lorawan/ lorawan quickguide build lora node rfm95 arduino uno.html

between the HopeRF RFM95 LoRa transceiver module and the Arduino Uno.

HopeRF RFM95 LoRa transceiver module	Arduino Uno Pin	HopeRF RFM95 LoRa transceiver module	Arduino Uno Pin
ANT	-	GND	-
GND	GND	DIO5	-
DIO3	-	RESET	5
DIO4	-	NSS	10
3.3V	3.3V	SCK	13
DIO0	2	MOSI	11
DIO1	3	MISO	12
DIO2	-	GND	-

mobilefish.com

• The self build LoRa development board uses the following jumper wire connections

• Note: The HopeRF RFM95 LoRa transceiver module is compatible with SXI276.

- Make sure a LoRa gateway is in your area and your LoRa end device can send messages to that gateway. Use this map: https://www.thethingsnetwork.org/map
- Install the latest open source Arduino IDE. In this tutorial, version 1.8.7 is used. https://www.arduino.cc/en/Main/Software
- Now install the MCCI Arduino LMIC Library. - In the Arduino IDE, select menu Sketch | Include Library | Manage Libraries
 - In the search box enter: MCCI
 - Click the MCCI library.
 - Select the latest version and press the Install button.

- The Arduino libraries are installed on these default locations: Windows: C:\Users\<username>\Documents\Arduino\libraries OSX: /Users/<username>/Documents/Arduino/libraries Linux: /home/<username>/arduino/sketchbook/libraries
- Configure the MCCI Arduino LMIC Library according to your situation. Edit file Imic_project_config.h. This file can be found at: ../libraries/MCCI_LoRaWAN_LMIC_library/project_config

• The changes I made to MY Imic_project_config.h file. Make changes according to YOUR situation.

// project-specific definitions #define CFG eu868 1 //#define CFG us915 1 //#define CFG au921 1 //#define CFG as923 1 // #define LMIC_COUNTRY_CODE LMIC_COUNTRY_CODE JP /* for as923-JP */ //#define CFG in866 1

#define CFG_sx1276_radio 1 //#define CFG sx1272 radio 1

#define DISABLE PING **#define DISABLE BEACONS** #define LMIC_DEBUG_LEVEL 0 #define USE_IDEETRON_AES

The Arduino Uno (ATmega328) has 32kBytes of flash memory for the bootloader + uploaded sketch. It is important to use these settings:
#define DISABLE_PING
#define LMIC_DEBUG_LEVEL 0
#define USE_IDEETRON_AES
.... otherwise the compiled sketch does fits the Arduino Uno flash memory.

 There are more configuration settings which can be overridden by the Imic_project_config.h file, see: .../libraries/MCCI_LoRaWAN_LMIC_library/src/Imic/config.h But in this demonstration I do not override any of these other settings.

- Create an account on The Things Network (TTN) https://www.thethingsnetwork.org/
- On TTN, add an application: Application ID: youtube_demo_app Description: My YouTube LoRawan demo application
- On TTN, register a device: Device ID: youtube_demo_device You can use this tool to create the device EUI: https://www.mobilefish.com/services/guid/guid.php

mobilefish.com

Device EUI: F9C01FAA68E1D265 (Enter a random value consisting of 8 bytes)

• Make sure the activation method is OTAA. The App Key is generated.

- ttn-otaa-mydemo sketch. Watch out: The DevEUI and AppEUI must be in little-endian format. The AppKey must be in big endian format.

mobilefish.com

 In the Arduino IDE, select menu File | Examples | MCC LoRaWAN LMIC library and select the ttn-otaa sketch. Re-save the ttn-otaa sketch and call it ttn-otaa-mydemo.

• From The Things Network console copy YOUR DevEUI, AppEUI and AppKey to the

BIG-ENDIAN VS LITTLE-ENDIAN FORMAT

- bytes are stored in computer memory.
- Big-endian is an order in which the most significant bit (msb) is stored first.
- Little-endian is an order in which the least significant bit (lsb) is stored first.
- 5 bytes in big-endian (msb) format

mobilefish.com

• Big-endian and little-endian are terms that describe the order in which a sequence of

5 bytes in little-endian (lsb) format

Make the additional changes to the ttn-otaa-mydemo sketch.

// Pin mapping const lmic pinmap lmic pins = { .nss = 10,.rxtx = LMIC UNUSED PIN, .rst = 5,.dio = $\{2, 3, LMIC UNUSED PIN\},$ };

- variables: mydata[] and TX_INTERVAL.
- For this video the TX_INTERVAL is 60 seconds.

mobilefish.com

HopeRF RFM95 LoRa transceiver module	Arduino Uno Pin	HopeRF RFM95 LoRa transceiver module	Arduino Uno
ANT	-	GND	-
GND	GND	DIO5	-
DIO3	-	RESET	5
DIO4	-	NSS	10
3.3V	3.3V	SCK	13
DIO0	2	MOSI	11
DIO1	3	MISO	12
DIO2	-	GND	-

• In this sketch the message "Hello, world!" will be transmitted every 60 seconds, see

- cable.
- In the Arduino IDE, select menu Tools | Port and select: your_port
- Compile ttn-otaa-mydemo sketch. You should not see any errors.
- Upload the ttn-otaa-mydemo sketch to the Arduino Uno. You should not see any errors.
- In the Arduino IDE, select menu Tools | Serial Monitor Select baud rate: 9600

• Connect the self build LoRa development board to your computer using the USB

In the Arduino IDE, select menu Tools | Board and select: Arduino/Genuino Uno

- Goto The Things Network console:
 - Select the app: youtube_demo_app
 - Select the registered device: youtube_demo_device
- In the Device Overview screen, top right corner, select Data.
- network server and displayed in the The Things Network console.
- https://www.mobilefish.com/download/lora/ttn-otaa-mydemo-data.txt

mobilefish.com

- Select reset frame counters. Do this each time your end device is powered up.

• Your device is being registered and after a few minutes the message "Hello, world!" (in hex: 48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21) is received by a gateway and send to the

• The metadata displayed by TTN console, during the demonstration can be found here:

- Question: keep running the ttn-otaa-mydemo sketch for a day?
- This question will be answered in the next video.

mobilefish.com

Do I comply with the ETSI duty cycles and The Things Network Fair Access Policy if I

