# Big number equation calculation

This tool allows you to add (+), subtract (-), mutiply (*), calculate the modulo (%), calculate the power (^) or calculate the greatest common divisor (gcd) of very large positive integer numbers.
The calculation result bitsize is also calculated.

An example of a big decimal number:
1273996296181018710611647143694151388896909932754376274204440944923205432723072
8366135879053383805072316653724894187029827876824054296840853269389449560099146
2888770154271773743688518108469133360749226067433284253841524878382663213020300
439013395051660095465213244114983915020095532593844192661702194876809221

An example of a big hexadecimal number:
e8 f9 86 0f 90 fa 86 d7 df bd 72 26 b6 d7 44 02
83 78 73 d9 02 28 ef 88 45 39 fb 10 e8 7c ae a9
38 d5 75 c6 38 eb 0a 15 07 9b 83 e8 cd 82 d5 e3
f7 15 68 45 a1 0b 19 85 bc e2 ef 84 e7 dd f2 d7
b8 98 c2 a1 bb b5 c1 51 df d4 83 02 a7 3d 06 42
5b e1 22 c3 de 6b 85 5f 1c d6 da 4e 8b d3 9b ee
b9 67 22 2a 1d 11 ef 79 a4 b3 37 8a f4 fe 18 fd
bc f9 46 23 50 97 f3 ac fc 24 46 2b 5c 3b b7 45

Note: In a Windows calculator you can enter big numbers with less than 33 digits, but this tool allows you to enter much more than that!

How this tool works:
• Enter the big integer positive numbers indicated by a, b, c, d or e in the corresponding input fields and specify its encoding scheme (binary, decimal, hexadecimal or base64).
• Enter the equation in the "Calculation equation" area, see the table below which equation can be used.
Use the variables a, b, c, d or e in your equation to reference the big numbers.
• Select the encoding scheme the calculation result should be converted into.
• Press the Calculate button.
 Equation Description Example Equation to be used in this tool a + b Add a and b. 3 + 2 = 5 add(a,b) a + n Add a and n 3 + 2 = 5 addInt(a,n) a * b Multiply a and b 3 * 2 = 6 mult(a,b) a - b Subtract a and b 3 - 2 = 1 sub(a,b) gcd(a,b) Calculate greatest common divisor of a and b. gcd(36,24) = 12 GCD(a,b) a ^ b Calculate a ^ b 2 ^ 3 = 8 bigPow(a,b) a % b Calculate a modulo b 11 % 7 = 4 mod(a,b) (a * b) % c Multiply a and b. Calculate result modulo c (3 * 5) % 9 = 6 multMod(a,b,c) (a ^ b) % c Calculate ab. Calculate result modulo c (3 ^ 2) % 6 = 3 powMod(a,b,c) (a ^ -1) % b Calculate a-1. Calculate result modulo b (2 ^ -1) % 3 = 2 inverseMod(a,b) Examples (a + b) * (c + d) - (1 + 2) * (3 + 4) = 21 mult(add(a,b), add(c,d)) (a - b) * (c - d) - (2 - 1) * (4 - 2) = 2 mult(sub(a,b), sub(c,d)) (a - 1) * (b - 1) - (5 - 1) * (7 - 1) = 24 mult(addInt(a,-1), addInt(b,-1)) a + b + c + d + e - 1 + 2 + 3 + 4 + 5 = 15 add(add(add(add(a,b),c),d),e)
Note:
a, b, c, d or e are big positive integer numbers.
n is a small integer number

All cryptography related services on this website:

## Input big number equation calculation:

 Number a type*: binary decimal hexadecimal base64 Number a value*: Number b type: === not applicable === binary decimal hexadecimal base64 Number b value: Number c type: === not applicable === binary decimal hexadecimal base64 Number c value: Number d type: === not applicable === binary decimal hexadecimal base64 Number d value: Number e type: === not applicable === binary decimal hexadecimal base64 Number e value: Calculationequation: Convert calculation result to a *: binary decimal hexadecimal base64 * = required